2,175 research outputs found
A Continuous Non-demolition Measurement of the Cs Clock Transition Pseudo-spin
We demonstrate a weak continuous measurement of the pseudo-spin associated
with the clock transition in a sample of Cs atoms. Our scheme uses an optical
probe tuned near the D1 transition to measure the sample birefringence, which
depends on the z-component of the collective pseudospin. At certain probe
frequencies the differential light shift of the clock states vanishes and the
measurement is non-perturbing. In dense samples the measurement can be used to
squeeze the collective clock pseudo-spin, and has potential to improve the
performance of atomic clocks and interferometers.Comment: 4 pages, 4 figures, ReVTeX, modified text in response to referee's
comment
Polychlorinated biphenyls in air and water of the North Atlantic and Arctic Ocean.
Air and seawater samples were collected on board the R/V Polarstern during a scientific expedition from Germany to the Arctic Ocean during June–August 2004. The air data show a strong decline with latitude with the highest polychlorinated biphenyl (PCB) concentrations in Europe and the lowest in the Arctic. ΣICES PCBs in air range from 100 pg m−3 near Norway to 0.8 pg m−3 in the Arctic. A comparison with other data from previous and ongoing land-based air measurements in the Arctic region suggests no clear temporal decline of PCBs in the European Arctic since the mid-1990s. Dissolved concentrations of Σ6PCBs (28/31, 52, 101, 118, 138, 153) in surface seawater were <1 pg L−1. Dominant PCBs in seawater were 28/31 and 52 (0.1–0.44 pg L−1), with PCBs 101, 118, and 138 < 0.1 pg L−1. In seawater, PCB 52 displayed the highest concentrations in the northernmost samples, while PCBs 101, 118, and 138 showed slightly decreasing trends with increasing latitude. Fractionation was observed for PCBs in seawater with the relative abundance of PCBs 28 and 52 increasing and that of the heavier congeners decreasing with latitude. However, in air only 15–20% of the variability of atmospheric PCBs can be explained by temperature. Owing to large uncertainties in the Henry's Law constant (HLC) values, fugacity quotients for PCBs were estimated using different HLCs reported in the literature. These indicate that on average, deposition dominates over volatilization for PCBs in the Arctic region with a strong increase in the middle of the transect near the marginal ice zone (78–79°N). The increase in fugacity ratio is mainly caused by an increase in air concentration in this region (possibly indirectly caused by ice melting being a source of PCBs to the atmosphere)
SPIRE Map-Making Test Report
The photometer section of SPIRE is one of the key instruments on board of
Herschel. Its legacy depends very much on how well the scanmap observations
that it carried out during the Herschel mission can be converted to high
quality maps. In order to have a comprehensive assessment on the current status
of SPIRE map-making, as well as to provide guidance for future development of
the SPIRE scan-map data reduction pipeline, we carried out a test campaign on
SPIRE map-making. In this report, we present results of the tests in this
campaign.Comment: This document has an executive summary, 6 chapters, and 102 pages.
More information can be found at:
https://nhscsci.ipac.caltech.edu/sc/index.php/Spire/SPIREMap-MakingTest201
Recommended from our members
Innovative Approaches to Emergency Medical Services Fellowship Challenges
Introduction: Since the development of an Accreditation Council of Graduate Medical Education (ACGME)-accredited emergency medical services (EMS) fellowship, there has been little published literature on effective methods of content delivery or training modalities. Here we explore a variety of innovative approaches to the development and revision of the EMS fellowship curriculum.Methods: Three academic, university-based ACGME-accredited EMS fellowship programs each implemented an innovative change to their existing training curricula. These changes included the following: a novel didactic curriculum delivery modality and evaluation; implementation of a distance education program to improve EMS fellows’ rural EMS experiences; and modification of an existing EMS fellowship curriculum to train a non-emergency medicine physician.Results: Changes made to each of the above EMS fellowship programs addressed unique challenges, demonstrating areas of success and promise for more generalized implementation of these curricula. Obstacles remain in tailoring the described curricula to the needs of each unique institution and system.Conclusion: Three separate curricula and program changes were implemented to overcome specific challenges and achieve educational goals. It is our hope that our shared experiences will enable others in addressing common barriers to teaching the EMS fellowship core content and share similar innovative approaches to educational challenges
Memory-Constrained Algorithms for Simple Polygons
A constant-workspace algorithm has read-only access to an input array and may
use only O(1) additional words of bits, where is the size of
the input. We assume that a simple -gon is given by the ordered sequence of
its vertices. We show that we can find a triangulation of a plane straight-line
graph in time. We also consider preprocessing a simple polygon for
shortest path queries when the space constraint is relaxed to allow words
of working space. After a preprocessing of time, we are able to solve
shortest path queries between any two points inside the polygon in
time.Comment: Preprint appeared in EuroCG 201
The Great Observatories All-Sky LIRG Survey: Comparison of Ultraviolet and Far-Infrared Properties
The Great Observatories All-sky LIRG Survey (GOALS) consists of a complete
sample of 202 Luminous Infrared Galaxies (LIRGs) selected from the IRAS Revised
Bright Galaxy Sample (RBGS). The galaxies span the full range of interaction
stages, from isolated galaxies to interacting pairs to late stage mergers. We
present a comparison of the UV and infrared properties of 135 galaxies in GOALS
observed by GALEX and Spitzer. For interacting galaxies with separations
greater than the resolution of GALEX and Spitzer (2-6"), we assess the UV and
IR properties of each galaxy individually. The contribution of the FUV to the
measured SFR ranges from 0.2% to 17.9%, with a median of 2.8% and a mean of 4.0
+/- 0.4%. The specific star formation rate of the GOALS sample is extremely
high, with a median value (3.9*10^{-10} yr^{-1}) that is comparable to the
highest specific star formation rates seen in the Spitzer Infrared Nearby
Galaxies Survey sample. We examine the position of each galaxy on the IR
excess-UV slope (IRX-beta) diagram as a function of galaxy properties,
including IR luminosity and interaction stage. The LIRGs on average have
greater IR excesses than would be expected based on their UV colors if they
obeyed the same relations as starbursts with L_IR < 10^{11}L_0 or normal
late-type galaxies. The ratio of L_IR to the value one would estimate from the
IRXg-beta relation published for lower luminosity starburst galaxies ranges
from 0.2 to 68, with a median value of 2.7. A minimum of 19% of the total IR
luminosity in the RBGS is produced in LIRGs and ULIRGs with red UV colors (beta
> 0). Among resolved interacting systems, 32% contain one galaxy which
dominates the IR emission while the companion dominates the UV emission. Only
21% of the resolved systems contain a single galaxy which dominates both
wavelengths.Comment: 37 pages, 10 figures, accepted for publication in Ap
SPIRE Point Source Catalog Explanatory Supplement
The Spectral and Photometric Imaging Receiver (SPIRE) was launched as one of
the scientific instruments on board of the space observatory Herschel. The
SPIRE photometer opened up an entirely new window in the Submillimeter domain
for large scale mapping, that up to then was very difficult to observe. There
are already several catalogs that were produced by individual Herschel science
projects. Yet, we estimate that the objects of only a fraction of these maps
will ever be systematically extracted and published by the science teams that
originally proposed the observations. The SPIRE instrument performed its
standard photometric observations in an optically very stable configuration,
only moving the telescope across the sky, with variations in its configuration
parameters limited to scan speed and sampling rate. This and the scarcity of
features in the data that require special processing steps made this dataset
very attractive for producing an expert reduced catalog of point sources that
is being described in this document. The Catalog was extracted from a total of
6878 unmodified SPIRE scan map observations. The photometry was obtained by a
systematic and homogeneous source extraction procedure, followed by a rigorous
quality check that emphasized reliability over completeness. Having to exclude
regions affected by strong Galactic emission, that pushed the limits of the
four source extraction methods that were used, this catalog is aimed primarily
at the extragalactic community. The result can serve as a pathfinder for ALMA
and other Submillimeter and Far-Infrared facilities. 1,693,718 sources are
included in the final catalog, splitting into 950688, 524734, 218296 objects
for the 250\mu m, 350\mu m, and 500\mu m bands, respectively. The catalog comes
with well characterized environments, reliability, completeness, and
accuracies, that single programs typically cannot provide
Solution-Based Synthesis of GeTe Octahedra at Low Temperature
GeTe octahedra were prepared by reaction of equimolar amounts of GeCl2·dioxane and Te(SiEt3)2 in oleylamine, whereas a slight excess of the Te precursor yielded GeTe octahedra decorated with elemental Te nanowires, which can be removed by washing with TOP. The mechanism of the GeTe formation is strongly influenced by the solvent. The expected elimination of Et3SiCl (dehalosilylation) only occurred in aprotic solvents, whereas Te(SiEt3)2 was found to react with primary and secondary amines with formation of silylamines. Temperature-dependent studies on the reaction in oleylamine showed that crystalline GeTe particles are formed at temperatures higher than 140 °C. XRD, SAED, and HRTEM studies proved the formation of rhombohedral GeTe nanoparticles. These findings were confirmed by a single-crystal and powder X-ray analysis. The rhombohedral structure modification was found, and the structure was solved in the acentric space group R3m
- …
