7,503 research outputs found

    Systematically searching for and assessing the literature for self-management of chronic pain: A lay users' perspective

    Get PDF
    © 2014 Schofield et al.; licensee BioMed Central Ltd. Background: The Engaging with older adults in the development of strategies for the self management of chronic pain (EOPIC) study aims to design and develop self management strategies to enable older adults to manage their own pain. Involving older adults in research into chronic pain management will better enable the identification and development of strategies that are more appropriate for their use, but how can perspectives really be utilised to the best possible outcomes?. Method. Seven older adults were recruited through a local advertising campaign to take part. We also invited participants from the local pain services, individuals who had been involved in earlier phase of the EOPIC study and a previous ESRC funded project. The group undertook library training and research skills training to facilitate searching of the literature and identified sources of material. A grading tool was developed using perceived essential criteria identified by the older adults and material was graded according to the criteria within this scale. Results: Fifty-seven resources from over twenty-eight sources were identified. These materials were identified as being easily accessible, readable and relevant. Many of the web based materials were not always easy to find or readily available so they were excluded by the participants. All but one were UK based. Forty-four items were identified as meeting the key criteria for inclusion in the study. This included five key categories as follows; books, internet, magazines, leaflets, CD's/Tapes. Conclusion: This project was able to identify a number of exemplars of self management material along with some general rules regarding the categories identified. We must point out that the materials identified were not age specific, were often locally developed and would need to be adapted to older adults with chronic pain. For copyright issues we have not included them in this paper. The key message is really related to the format rather than the content. However, the group acknowledge that these may vary according to the requirements of each individual older adult and therefore recommend the development of a leaflet to help others in their search for resources. This leaflet has been developed as part of Phase IV of the EOPIC study

    Correlated magnetic noise in global networks of gravitational-wave detectors: Observations and implications

    Get PDF
    One of the most ambitious goals of gravitational-wave astronomy is to observe the stochastic gravitational-wave background. Correlated noise in two or more detectors can introduce a systematic error, which limits the sensitivity of stochastic searches. We report on measurements of correlated magnetic noise from Schumann resonances at the widely separated LIGO and Virgo detectors. We investigate the effect of this noise on a global network of gravitational-wave detectors and derive a constraint on the allowable coupling of environmental magnetic fields to test mass motion in gravitational-wave detectors. We find that while correlated noise from global electromagnetic fields could be safely ignored for initial LIGO stochastic searches, it could severely impact Advanced LIGO, Advanced Virgo, KAGRA, as well as third-generation detectors

    Modeling of solvent flow effects in enzyme catalysis under physiological conditions

    Full text link
    A stochastic model for the dynamics of enzymatic catalysis in explicit, effective solvents under physiological conditions is presented. Analytically-computed first passage time densities of a diffusing particle in a spherical shell with absorbing boundaries are combined with densities obtained from explicit simulation to obtain the overall probability density for the total reaction cycle time of the enzymatic system. The method is used to investigate the catalytic transfer of a phosphoryl group in a phosphoglycerate kinase-ADP-bis phosphoglycerate system, one of the steps of glycolysis. The direct simulation of the enzyme-substrate binding and reaction is carried out using an elastic network model for the protein, and the solvent motions are described by multiparticle collision dynamics, which incorporates hydrodynamic flow effects. Systems where solvent-enzyme coupling occurs through explicit intermolecular interactions, as well as systems where this coupling is taken into account by including the protein and substrate in the multiparticle collision step, are investigated and compared with simulations where hydrodynamic coupling is absent. It is demonstrated that the flow of solvent particles around the enzyme facilitates the large-scale hinge motion of the enzyme with bound substrates, and has a significant impact on the shape of the probability densities and average time scales of substrate binding for substrates near the enzyme, the closure of the enzyme after binding, and the overall time of completion of the cycle.Comment: 15 pages in double column forma

    Encapsulation of phosphorus dopants in silicon for the fabrication of a quantum computer

    Full text link
    The incorporation of phosphorus in silicon is studied by analyzing phosphorus delta-doped layers using a combination of scanning tunneling microscopy, secondary ion mass spectrometry and Hall effect measurements. The samples are prepared by phosphine saturation dosing of a Si(100) surface at room temperature, a critical annealing step to incorporate phosphorus atoms, and subsequent epitaxial silicon overgrowth. We observe minimal dopant segregation (5 nm), complete electrical activation at a silicon growth temperature of 250 degrees C and a high two-dimensional electron mobility of 100 cm2/Vs at a temperature of 4.2 K. These results, along with preliminary studies aimed at further minimizing dopant diffusion, bode well for the fabrication of atomically precise dopant arrays in silicon such as those found in recent solid-state quantum computer architectures.Comment: 3 pages, 4 figure

    Balancing employee needs, project requirements and organisational priorities in team deployment

    Get PDF
    The 'people and performance' model asserts that performance is a sum of employee ability, motivation and opportunity (AMO). Despite extensive evidence of this people-performance link within manufacturing and many service sectors, studies within the construction industry are limited. Thus, a recent research project set out to explore the team deployment strategies of a large construction company with the view of establishing how a balance could be achieved between organisational strategic priorities, operational project requirements and individual employee needs and preferences. The findings suggested that project priorities often took precedence over the delivery of the strategic intentions of the organisation in meeting employees' individual needs. This approach is not sustainable in the long term because of the negative implications that such a policy had in relation to employee stress and staff turnover. It is suggested that a resourcing structure that takes into account the multiple facets of AMO may provide a more effective approach for balancing organisational strategic priorities, operational project requirements and individual employee needs and preferences more appropriately in the future

    Mode-coupling theory for multiple-time correlation functions of tagged particle densities and dynamical filters designed for glassy systems

    Full text link
    The theoretical framework for higher-order correlation functions involving multiple times and multiple points in a classical, many-body system developed by Van Zon and Schofield [Phys. Rev. E 65, 011106 (2002)] is extended here to include tagged particle densities. Such densities have found an intriguing application as proposed measures of dynamical heterogeneities in structural glasses. The theoretical formalism is based upon projection operator techniques which are used to isolate the slow time evolution of dynamical variables by expanding the slowly-evolving component of arbitrary variables in an infinite basis composed of the products of slow variables of the system. The resulting formally exact mode-coupling expressions for multiple-point and multiple-time correlation functions are made tractable by applying the so-called N-ordering method. This theory is used to derive for moderate densities the leading mode coupling expressions for indicators of relaxation type and domain relaxation, which use dynamical filters that lead to multiple-time correlations of a tagged particle density. The mode coupling expressions for higher order correlation functions are also succesfully tested against simulations of a hard sphere fluid at relatively low density.Comment: 15 pages, 2 figure

    Emergence of the nematic electronic state in FeSe

    Get PDF
    We present a comprehensive study of the evolution of the nematic electronic structure of FeSe using high resolution angle-resolved photoemission spectroscopy (ARPES), quantum oscillations in the normal state and elastoresistance measurements. Our high resolution ARPES allows us to track the Fermi surface deformation from four-fold to two-fold symmetry across the structural transition at ~87 K which is stabilized as a result of the dramatic splitting of bands associated with dxz and dyz character. The low temperature Fermi surface is that a compensated metal consisting of one hole and two electron bands and is fully determined by combining the knowledge from ARPES and quantum oscillations. A manifestation of the nematic state is the significant increase in the nematic susceptibility as approaching the structural transition that we detect from our elastoresistance measurements on FeSe. The dramatic changes in electronic structure cannot be explained by the small lattice effects and, in the absence of magnetic fluctuations above the structural transition, points clearly towards an electronically driven transition in FeSe stabilized by orbital-charge ordering.Comment: Latex, 8 pages, 4 figure

    The spectrum of BPS branes on a noncompact Calabi-Yau

    Get PDF
    We begin the study of the spectrum of BPS branes and its variation on lines of marginal stability on O_P^2(-3), a Calabi-Yau ALE space asymptotic to C^3/Z_3. We show how to get the complete spectrum near the large volume limit and near the orbifold point, and find a striking similarity between the descriptions of holomorphic bundles and BPS branes in these two limits. We use these results to develop a general picture of the spectrum. We also suggest a generalization of some of the ideas to the quintic Calabi-Yau.Comment: harvmac, 45 pp. (v2: added references

    Phonons from neutron powder diffraction

    Full text link
    The spherically averaged structure function \soq obtained from pulsed neutron powder diffraction contains both elastic and inelastic scattering via an integral over energy. The Fourier transformation of \soq to real space, as is done in the pair density function (PDF) analysis, regularizes the data, i.e. it accentuates the diffuse scattering. We present a technique which enables the extraction of off-center phonon information from powder diffraction experiments by comparing the experimental PDF with theoretical calculations based on standard interatomic potentials and the crystal symmetry. This procedure (dynamics from powder diffraction(DPD)) has been successfully implemented for two systems, a simple metal, fcc Ni, and an ionic crystal, CaF2_{2}. Although computationally intensive, this data analysis allows for a phonon based modeling of the PDF, and additionally provides off-center phonon information from powder neutron diffraction

    Coastal oceanography and sedimentology in New Zealand, 1967-91.

    Get PDF
    This paper reviews research that has taken place on physical oceanography and sedimentology on New Zealand's estuaries and the inner shelf since c. 1967. It includes estuarine sedimentation, tidal inlets, beach morphodynamics, nearshore and inner shelf sedimentation, tides and coastal currents, numerical modelling, short-period waves, tsunamis, and storm surges. An extensive reference list covering both published and unpublished material is included. Formal teaching and research programmes dealing with coastal landforms and the processes that shape them were only introduced to New Zealand universities in 1964; the history of the New Zealand Journal of Marine and Freshwater Research parallels and chronicles the development of physical coastal science in New Zealand, most of which has been accomplished in last 25 years
    corecore