7,001 research outputs found
Observer-based tuning of two-inertia servo-drive systems with integrated SAW torque transducers
This paper proposes controller design and tuning
methodologies that facilitate the rejection of periodic load-side disturbances applied to a torsional mechanical system while simultaneously compensating for the observer’s inherent phase delay. This facilitates the use of lower-bandwidth practically realizable disturbance observers. The merits of implementing full- and reduced-order observers are investigated, with the latter being implemented with a new low-cost servo-machine-integrated highband width
torque-sensing device based on surface acoustic wave
(SAW) technology. Specifically, the authors’ previous work based on proportional–integral–derivative (PID) and resonance ratio control (RRC) controllers (IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1226–1237, Aug. 2006) is augmented with observer disturbance feedback. It is shown that higher-bandwidth disturbance observers are required to maximize disturbance attenuation over the low-frequency band (as well as the desired rejection frequency), thereby attenuating a wide range of possible frequencies. In such cases, therefore, it is shown that the RRC controller is
the preferred solution since it can employ significantly higher observer bandwidth, when compared to PID counterparts, by virtue of reduced noise sensitivity. Furthermore, it is demonstrated that the prototype servo-machine-integrated 20-N · mSAWtorque transducer is not unduly affected by machine-generated electromagnetic
noise and exhibits similar dynamic behavior as a
conventional instrument inline torque transducer
Predictive control for energy management in all/more electric vehicles with multiple energy storage units
The paper describes the application of Model Predictive Control (MPC) methodologies for application to electric and hybrid-electric vehicle drive-train formats incorporating multiple energy/power sources. Particular emphasis is given to the co-ordinated management of energy flow from the multiple sources to address issues of extended vehicle range and battery life-time for all-electric drive-trains, and emissions reduction and drive-train torsional oscillations, for hybrid-electric counterparts, whilst accommodating operational constraints and, ultimately, generic non-standard driving cycles
Hybrid energy sources for electric and fuel cell vehicle propulsion
Given the energy (and hence range) and performance limitations of electro-chemical batteries, hybrid systems combining energy and power dense storage technologies have been proposed for electric vehicle propulsion. The paper will discuss the application of electro-chemical batteries, supercapacitors and fuel cells in single and hybrid source configurations for electric vehicle drive-train applications. Simulation models of energy sources are presented and used to investigate the design optimisation of electric vehicle on-board energy source in terms of energy efficiency and storage mass/volume. Results from a case study considering a typical small urban electric vehicle are presented, illustrating the benefits of hybrid energy sources in terms of system mass and vehicle range. The models and approach can be applied to other vehicles and driving regimes
Observer based tuning techniques and integrated SAW torque transducers for two-inertia servo-drive systems
A controller design and tuning methodology is proposed that facilitates the rejection of periodic load-side disturbances applied to a torsional mechanical system, whilst simultaneously compensating for the disturbance observer's inherent phase delay, thereby facilitating the used of lower bandwidth, practically realisable, disturbance observers. The merits of implementing both a full- and reduced order observer, is investigated, with the latter being implemented with a new low-cost, high-bandwidth torque sensing device based on surface acoustic wave technolog
High-performance control of dual-inertia servo-drive systems using low-cost integrated SAW torque transducers
Abstract—This paper provides a systematic comparative
study of compensation schemes for the coordinated motion
control of two-inertia mechanical systems. Specifically, classical proportional–integral (PI), proportional–integral–derivative (PID), and resonance ratio control (RRC) are considered, with an enhanced structure based on RRC, termed RRC+, being proposed. Motor-side and load-side dynamics for each control structure are identified, with the “integral of time multiplied by absolute
error” performance index being employed as a benchmark metric. PID and RRC control schemes are shown to be identical from a closed-loop perspective, albeit employing different feedback sensing mechanisms. A qualitative study of the practical effects of employing each methodology shows that RRC-type structures
provide preferred solutions if low-cost high-performance torque transducers can be employed, for instance, those based on surface acoustic wave tecnologies. Moreover, the extra degree of freedom afforded by both PID and RRC, as compared with the basic PI, is shown to be sufficient to simultaneously induce optimal closed-loop performance and independent selection of virtual inertia ratio. Furthermore, the proposed RRC+ scheme is subsequently
shown to additionally facilitate independent assignment
of closed-loop bandwidth. Summary attributes of the investigation are validated by both simulation studies and by realization of the methodologies for control of a custom-designed two-inertia system
Reduction of cogging torque in interior-magnet brushless machines
An investigation into the cogging torque in a four-pole interior-magnet brushless machines having either a six-slot stator and a short-pitched nonoverlapping winding or a 12-slot stator and a full-pitched overlapping winding is described. It is shown by finite-element analyses and measurements that, by appropriately defining the pole-arc to pole-pitch ratio, the optimal pole-arc to pole-pitch ratio for minimum cogging torque, which has been derived for surface-mounted magnet machines, is equally applicable to interior-magnet machines
A H2 PEM fuel cell and high energy dense battery hybrid energy source for an urban electric vehicle
Electric vehicles are set to play a prominent role in addressing the energy and environmental impact of an increasing road transport population by offering a more energy efficient and less polluting drive-train alternative to conventional internal combustion engine (ICE) vehicles. Given the energy (and hence range) and performance limitations of electro-chemical battery storage systems, hybrid systems combining energy and power dense storage technologies have been proposed for vehicle applications. The paper discusses the application of a hydrogen fuel cell as a range extender for an urban electric vehicle for which the primary energy source is provided by a high energy dense battery. A review of fuel cell systems and automotive drive-train application issues are discussed, together with an overview of the battery technology. The prototype fuel cell and battery component simulation models are presented and their performance as a combined energy/power source assessed for typical urban and sub-urban driving scenario
Analysis of the human diseasome reveals phenotype modules across common, genetic, and infectious diseases
Phenotypes are the observable characteristics of an organism arising from its
response to the environment. Phenotypes associated with engineered and natural
genetic variation are widely recorded using phenotype ontologies in model
organisms, as are signs and symptoms of human Mendelian diseases in databases
such as OMIM and Orphanet. Exploiting these resources, several computational
methods have been developed for integration and analysis of phenotype data to
identify the genetic etiology of diseases or suggest plausible interventions. A
similar resource would be highly useful not only for rare and Mendelian
diseases, but also for common, complex and infectious diseases. We apply a
semantic text- mining approach to identify the phenotypes (signs and symptoms)
associated with over 8,000 diseases. We demonstrate that our method generates
phenotypes that correctly identify known disease-associated genes in mice and
humans with high accuracy. Using a phenotypic similarity measure, we generate a
human disease network in which diseases that share signs and symptoms cluster
together, and we use this network to identify phenotypic disease modules
Care Planning and Review for Looked After Children: Fifteen Years of Slow Progress?
This Critical Commentary reviews progress in research into planning and reviewing for children in care in England and Wales since the publication of two major studies in the late 1990s (roughly coinciding with the New Labour period). It briefly considers the changing context of law, regulation and guidance and the aims and objectives of
the care planning and review system. It then reviews the limited research literature available, in relation to a series of key topics. Consideration is also given to guides for children and practitioners on the subject. The commentary concludes by suggesting that this is an area in which research has failed to keep pace with changes in policy and practice, and recommends a more systematic approach
- …