146 research outputs found

    Promotion of arterial stiffness by childhood cancer and its characteristics in adult long‐term survivors

    Get PDF
    BACKGROUND Vascular alterations induced by antineoplastic treatment might be considered as a possible underlying mechanism of increased cardiovascular sequelae in childhood cancer survivors (CCSs). We aimed to evaluate arterial stiffness among long‐term CCSs and to compare the data against a population‐based sample. METHODS AND RESULTS Arterial stiffness was assessed by digital photoplethysmography (stiffness index; m/s) among 1002 participants of the CVSS (Cardiac and Vascular Late Sequelae in Long‐Term Survivors of Childhood Cancer) study, diagnosed with neoplasia (1980–1990) before an age of 15 years. A population‐based sample from the GHS (Gutenberg Health Study) (n=5252) was investigated for comparison. All subjects underwent a comprehensive, standardized clinical examination in the same study center. CCSs had higher stiffness index (ÎČ=0.66 m/s; 95% CI, 0.51–0.80 m/s) in multivariable linear regression analysis after adjustment for cardiovascular risk factors compared with the population sample of comparable age range. Stiffer vessels were found among CCSs also in absence of arterial hypertension (ÎČ=0.66; 95% CI, 0.50–0.81) or history of chemotherapy/radiotherapy (ÎČ=0.56; 95% CI, 0.16–0.96) in fully adjusted models. Moreover, stiffness index differed by tumor entity, with highest values in bone and renal tumors. Almost 5.2‐fold higher prevalence of stiffness index values exceeding age‐specific, population‐based reference limits was observed among CCSs compared with GHS participants. CONCLUSIONS This is the first study demonstrating increased arterial stiffness among long‐term CCSs. The data suggest that vascular compliance might differ in survivors of childhood cancer from the established development concept for arterial stiffness in the population; cancer growth and antineoplastic treatment might be relevant determinants of the pathobiological features

    Recommendations, guidelines, and best practice for the use of human induced pluripotent stem cells for neuropharmacological studies of neuropsychiatric disorders

    Get PDF
    The number of individuals suffering from neuropsychiatric disorders (NPDs) has increased worldwide, with 3 million disability-adjusted life-years calculated in 2019. Though research using various approaches including genetics, imaging, clinical and animal models has advanced our knowledge regarding NPDs, we still lack basic knowledge regarding the underlying pathophysiological mechanisms. Moreover, there is an urgent need for highly effective therapeutics for NPDs. Human induced pluripotent stem cells (hiPSCs) generated from somatic cells enabled scientists to create brain cells in a patient-specific manner. However, there are challenges to the use of hiPSCs that need to be addressed. In the current paper, consideration of best practices for neuropharmacological and neuropsychiatric research using hiPSCs will be discussed. Specifically, we provide recommendations for best practice in patient recruitment, including collecting demographic, clinical, medical (before and after treatment and response), diagnostic (including scales) and genetic data from the donors. We highlight considerations regarding donor genetics and sex, in addition to discussing biological and technical replicates. Furthermore, we present our views on selecting control groups/lines, experimental designs, and considerations for conducting neuropharmacological studies using hiPSC-based models in the context of NPDs. In doing so, we explore key issues in the field concerning reproducibility, statistical analysis, and how to translate in vitro studies into clinically relevant observations. The aim of this article is to provide a key resource for hiPSC researchers to perform robust and reproducible neuropharmacological studies, with the ultimate aim of improving identification and clinical translation of novel therapeutic drugs for NPDs

    The Eighteenth Data Release of the Sloan Digital Sky Surveys: Targeting and First Spectra from SDSS-V

    Get PDF
    The eighteenth data release of the Sloan Digital Sky Surveys (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs, or "Mappers": Milky Way Mapper (MWM), Black Hole Mapper (BHM), and Local Volume Mapper (LVM). This data release contains extensive targeting information for the two multi-object spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration- and scientifically-focused components. DR18 also includes ~25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field.Comment: Accepted to ApJ

    The eighteenth data release of the Sloan Digital Sky Surveys : targeting and first spectra from SDSS-V

    Get PDF
    The eighteenth data release of the Sloan Digital Sky Surveys (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs, or "Mappers": Milky Way Mapper (MWM), Black Hole Mapper (BHM), and Local Volume Mapper (LVM). This data release contains extensive targeting information for the two multi-object spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration- and scientifically-focused components. DR18 also includes ~25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field.Publisher PDFPeer reviewe

    Recommendations, guidelines, and best practice for the use of human induced pluripotent stem cells for neuropharmacological studies of neuropsychiatric disorders

    Get PDF
    The number of individuals suffering from neuropsychiatric disorders (NPDs) has increased worldwide, with 3 million disability-adjusted life-years calculated in 2019. Though research using various approaches including genetics, imaging, clinical and animal models has advanced our knowledge regarding NPDs, we still lack basic knowledge regarding the underlying pathophysiological mechanisms. Moreover, there is an urgent need for highly effective therapeutics for NPDs. Human induced pluripotent stem cells (hiPSCs) generated from somatic cells enabled scientists to create brain cells in a patient-specific manner. However, there are challenges to the use of hiPSCs that need to be addressed. In the current paper, consideration of best practices for neuropharmacological and neuropsychiatric research using hiPSCs will be discussed. Specifically, we provide recommendations for best practice in patient recruitment, including collecting demographic, clinical, medical (before and after treatment and response), diagnostic (including scales) and genetic data from the donors. We highlight considerations regarding donor genetics and sex, in addition to discussing biological and technical replicates. Furthermore, we present our views on selecting control groups/lines, experimental designs, and considerations for conducting neuropharmacological studies using hiPSC-based models in the context of NPDs. In doing so, we explore key issues in the field concerning reproducibility, statistical analysis, and how to translate in vitro studies into clinically relevant observations. The aim of this article is to provide a key resource for hiPSC researchers to perform robust and reproducible neuropharmacological studies, with the ultimate aim of improving identification and clinical translation of novel therapeutic drugs for NPDs

    Recommendations, guidelines, and best practice for the use of human induced pluripotent stem cells for neuropharmacological studies of neuropsychiatric disorders

    Get PDF
    The number of individuals suffering from neuropsychiatric disorders (NPDs) has increased worldwide, with 3 million disability-adjusted life-years calculated in 2019. Though research using various approaches including genetics, imaging, clinical and animal models has advanced our knowledge regarding NPDs, we still lack basic knowledge regarding the underlying pathophysiological mechanisms. Moreover, there is an urgent need for highly effective therapeutics for NPDs i. Human induced pluripotent stem cells (hiPSCs) generated from somatic cells enabled scientists to create brain cells in a patient-specific manner. However, there are challenges to the use of hiPSCs that need to be addressed. In the current paper, consideration of best practices for neuropharmacological and neuropsychiatric research using hiPSCs will be discussed. Specifically, we provide recommendations for best practice in patient recruitment, including collecting demographic, clinical, medical (before and after treatment and response), diagnostic (incl. scales) and genetic data from the donors. We highlight considerations regarding donor genetics and sex, in addition to discussing biological and technical replicates. Furthermore, we present our views on selecting control groups/lines, experimental designs, and considerations for conducting neuropharmacological studies using hiPSC-based models in the context of NPDs. In doing so, we explore key issues in the field concerning reproducibility, statistical analysis, and how to translate in vitro studies into clinically relevant observations. The aim of this article is to provide a key resource for hiPSC researchers to perform robust and reproducible neuropharmacological studies, with the ultimate aim of improving identification and clinical translation of novel therapeutic drugs for NPDs

    A genome‐wide association meta‐analysis of all‐cause and vascular dementia

    Get PDF
    INTRODUCTION: Dementia is a multifactorial disease with Alzheimer's disease (AD) and vascular dementia (VaD) pathologies making the largest contributions. Yet, most genome-wide association studies (GWAS) focus on AD. METHODS: We conducted a GWAS of all-cause dementia (ACD) and examined the genetic overlap with VaD. Our dataset includes 800,597 individuals, with 46,902 and 8702 cases of ACD and VaD, respectively. Known AD loci for ACD and VaD were replicated. Bioinformatic analyses prioritized genes that are likely functionally relevant and shared with closely related traits and risk factors. RESULTS: For ACD, novel loci identified were associated with energy transport (SEMA4D), neuronal excitability (ANO3), amyloid deposition in the brain (RBFOX1), and magnetic resonance imaging markers of small vessel disease (SVD; HBEGF). Novel VaD loci were associated with hypertension, diabetes, and neuron maintenance (SPRY2, FOXA2, AJAP1, and PSMA3). DISCUSSION: Our study identified genetic risks underlying ACD, demonstrating overlap with neurodegenerative processes, vascular risk factors, and cerebral SVD. Highlights: We conducted the largest genome-wide association study of all-cause dementia (ACD) and vascular dementia (VaD). Known genetic variants associated with AD were replicated for ACD and VaD. Functional analyses identified novel loci for ACD and VaD. Genetic risks of ACD overlapped with neurodegeneration, vascular risk factors, and cerebral small vessel disease

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys

    The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra. \ua9 2015. The American Astronomical Society

    Bi-allelic loss-of-function CACNA1B mutations in progressive epilepsy-dyskinesia

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment
    • 

    corecore