1,114 research outputs found
Submental Island Flaps for Lateral Reconstruction: Technical Refinements for Optimal Outcomes and Resource Efficiency
OBJECTIVE: To describe our modifications to the submental island flap (SMIF) in a case series that demonstrates improved reproducibility, shortened length of stay (LOS), and reduced utilization of hospital resources.
STUDY DESIGN: This retrospective case series with chart review included adult patients who underwent resection of malignant or benign tumors resulting in lateral facial, parotid, or temporal bone defects, which were reconstructed with SMIF.
SETTING: A tertiary-care academic referral center.
METHODS: Retrospective case series included all adult patients who underwent SMIF reconstruction between March 2020 and August 2021. Patient demographic and clinical data were collected. Primary outcomes were measures of hospital utilization including duration of surgery, LOS, and postoperative outcomes.
RESULTS: Twenty-eight patients were included with a mean age of 71.7 years. Eighty percent were male. All patients underwent parotidectomy, and the mean operative time was 347 minutes. The median LOS was 2.5 days (range 0-16 days). Seventy-five percent of the flaps drained into the internal jugular vein, and 25% drained into the external jugular vein. No patients required reoperation or readmission. All flaps survived.
CONCLUSION: SMIFs are a safe and effective option for reconstruction of lateral facial, parotid, and temporal bone defects. Compared to free flap reconstruction, SMIFs offer reduced length of surgery, decreased use of health care resources, and lower rate of reoperation. As health care resource allocation is increasingly important, the SMIF offers an excellent alternative to free flap reconstruction of lateral defects
Critical review of the current and future prospects of VEGF-TKIs in the management of squamous cell carcinoma of head and neck
As the prognosis for squamous cell carcinoma of the head and neck remains unsatisfactory when compared to other malignancies, novel therapies targeting specific biomarkers are a critical emerging area of great promise. One particular class of drugs that has been developed to impede tumor angiogenesis is vascular endothelial growth factor-tyrosine kinase inhibitors. As current data is primarily limited to preclinical and phase I/II trials, this review summarizes the current and future prospects of these agents in squamous cell carcinoma of the head and neck. In particular, the combination of these agents with immunotherapy is an exciting area that may be a promising option for patients with recurrent or metastatic disease, evidenced in recent trials such as the combination immune checkpoint inhibitors with lenvatinib and cabozantinib. In addition, the use of such combination therapy preoperatively in locally advanced disease is another area of interest
Neuroprotective Effect of Combination Therapy of Glatiramer Acetate and Epigallocatechin-3-Gallate in Neuroinflammation
Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system. However, studies of MS and the animal model, experimental autoimmune encephalomyelitis (EAE), indicate that neuronal pathology is the principle cause of clinical disability. Thus, there is need to develop new therapeutic strategies that not only address immunomodulation but also neuroprotection. Here we show that the combination therapy of Glatiramer acetate (GA), an immunomodulatory MS therapeutic, and the neuroprotectant epigallocatechin-3-gallate (EGCG), the main phenol in green tea, have synergistic protective effects in vitro and in the EAE model. EGCG and GA together led to increased protection from glutamate- and TRAIL-induced neuronal cell death in vitro. EGCG combined with GA induced regeneration of hippocampal axons in an outgrowth assay. The combined application of EGCG and GA did not result in unexpected adverse events in vivo. Neuroprotective and neuroregenerative effects could be translated in the in vivo model, where combination treatment with EGCG and GA significantly delayed disease onset, strongly reduced clinical severity, even after onset of symptoms and reduced inflammatory infiltrates. These results illustrate the promise of combining neuroprotective and anti-inflammatory treatments and strengthen the prospects of EGCG as an adjunct therapy for neuroinflammatory and neurodegenerative diseases
Pembrolizumab and Cabozantinib in Recurrent Metastatic Head and Neck Squamous Cell Carcinoma: a Phase 2 Trial
Anti-programmed cell death protein 1 (PD-1) therapy is a standard of care in recurrent metastatic head and neck squamous cell carcinoma (RMHNSCC). Vascular endothelial growth factor inhibitors, including tyrosine kinase inhibitors, have immunomodulatory properties and have offered promising results when combined with anti-PD-1 agents. We conducted a phase 2, multicenter, single-arm trial of pembrolizumab and cabozantinib in patients with RMHNSCC who had Response Evaluation Criteria in Solid Tumors v.1.1 measurable disease and no contraindications to either agent. We assessed the primary end points of tolerability and overall response rate to the combination with secondary end points of progression-free survival and overall survival and performed correlative studies with PDL-1 and combined positive score, CD8+ T cell infiltration and tumor mutational burden. A total of 50 patients were screened and 36 were enrolled with 33 evaluable for response. The primary end point was met, with 17 out of 33 patients having a partial response (52%) and 13 (39%) stable disease with an overall clinical benefit rate of 91%. Median and 1-year overall survival were 22.3 months (95% confidence interval (CI) = 11.7–32.9) and 68.4% (95 % CI = 45.1%–83.5%), respectively. Median and 1-year progression-free survival were 14.6 months (95% CI = 8.2–19.6) and 54% (95% CI = 31.5%–72%), respectively. Grade 3 or higher treatment-related adverse events included increased aspartate aminotransferase (n = 2, 5.6%). In 16 patients (44.4%), the dose of cabozantinib was reduced to 20 mg daily. The overall response rate correlated positively with baseline CD8+ T cell infiltration. There was no observed correlation between tumor mutational burden and clinical outcome. Pembrolizumab and cabozantinib were well tolerated and showed promising clinical activity in patients with RMHNSCC. Further investigation of similar combinations are needed in RMHNSCC
Mutations in the potassium channel subunit KCNE1 are associated with early-onset familial atrial fibrillation
<p>Abstract</p> <p>Background</p> <p>Atrial fibrillation (AF) is the most common arrhythmia. The potassium current I<sub>Ks </sub>is essential for cardiac repolarization. Gain-of-function mutations in K<sub>V</sub>7.1, the pore-forming α-subunit of the I<sub>Ks </sub>channel, have been associated with AF. We hypothesized that early-onset lone AF is associated with mutations in the I<sub>Ks </sub>channel regulatory subunit KCNE1.</p> <p>Methods</p> <p>In 209 unrelated early-onset lone AF patients (< 40 years) the entire coding sequence of <it>KCNE1 </it>was bidirectionally sequenced. We analyzed the identified KCNE1 mutants electrophysiologically in heterologous expression systems.</p> <p>Results</p> <p>Two non-synonymous mutations G25V and G60D were found in <it>KCNE1 </it>that were not present in the control group (n = 432 alleles) and that have not previously been reported in any publicly available databases or in the exom variant server holding exom data from more than 10.000 alleles. Proband 1 (female, age 45, G25V) had onset of paroxysmal AF at the age of 39 years. Proband 2 (G60D) was diagnosed with lone AF at the age of 33 years. The patient has inherited the mutation from his mother, who also has AF. Both probands had no mutations in genes previously associated with AF. In heterologous expression systems, both mutants showed significant gain-of-function for I<sub>Ks </sub>both with respect to steady-state current levels, kinetic parameters, and heart rate-dependent modulation.</p> <p>Conclusions</p> <p>Mutations in K<sub>V</sub>7.1 leading to gain-of-function of I<sub>Ks </sub>current have previously been described in lone AF, yet this is the first time a mutation in the beta-subunit <it>KCNE1 </it>is associated with the disease. This finding further supports the hypothesis that increased potassium current enhances AF susceptibility.</p
DRhigh+CD45RA−-Tregs Potentially Affect the Suppressive Activity of the Total Treg Pool in Renal Transplant Patients
Recent studies show that regulatory T cells (Tregs) play an essential role in tolerance induction after organ transplantation. In order to examine whether there are differences in the composition of the total CD4+CD127low+/−FoxP3+- Treg cell pool between stable transplant patients and patients with biopsy proven rejection (BPR), we compared the percentages and the functional activity of the different Treg cell subsets (DRhigh+CD45RA−-Tregs, DRlow+CD45RA−-Tregs, DR−CD45RA−-Tregs, DR−CD45RA+-Tregs). All parameters were determined during the three different periods of time after transplantation (0–30 days, 31–1,000 days, >1,000 days). Among 156 transplant patients, 37 patients suffered from BPR. The most prominent differences between rejecting and non-rejecting patients were observed regarding the DRhigh+CD45RA−-Treg cell subset. Our data demonstrate that the suppressive activity of the total Treg pool strongly depends on the presence of these Treg cells. Their percentage within the total Treg pool strongly decreased after transplantation and remained relatively low during the first year after transplantation in all patients. Subsequently, the proportion of this Treg subset increased again in patients who accepted the transplant and reached a value of healthy non-transplanted subjects. By contrast, in patients with acute kidney rejection, the DRhigh+CD45RA−-Treg subset disappeared excessively, causing a reduction in the suppressive activity of the total Treg pool. Therefore, both the monitoring of its percentage within the total Treg pool and the monitoring of the HLA-DR MFI of the DR+CD45RA−-Treg subset may be useful tools for the prediction of graft rejection
Thorough assessment of DNA preservation from fossil bone and sediments excavated from a late Pleistocenee-Holocene cave deposit on Kangaroo Island, South Australia
Fossils and sediments preserved in caves are an excellent source of information for investigating impacts of past environmental changes on biodiversity. Until recently studies have relied on morphology-based palaeontological approaches, but recent advances in molecular analytical methods offer excellent potential for extracting a greater array of biological information from these sites. This study presents a thorough assessment of DNA preservation from late Pleistocene-Holocene vertebrate fossils and sediments from Kelly Hill Cave Kangaroo Island, South Australia. Using a combination of extraction techniques and sequencing technologies, ancient DNA was characterised from over 70 bones and 20 sediment samples from 15 stratigraphic layers ranging in age from >20 ka to ~6.8 ka. A combination of primers targeting marsupial and placental mammals, reptiles and two universal plant primers were used to reveal genetic biodiversity for comparison with the mainland and with the morphological fossil record for Kelly Hill Cave. We demonstrate that Kelly Hill Cave has excellent long-term DNA preservation, back to at least 20 ka. This contrasts with the majority of Australian cave sites thus far explored for ancient DNA preservation, and highlights the great promise Kangaroo Island caves hold for yielding the hitherto-elusive DNA of extinct Australian Pleistocene species
Fludarabine modulates composition and function of the T cell pool in patients with chronic lymphocytic leukaemia
The combination of cytotoxic treatment with strategies for immune activation represents an attractive strategy for tumour therapy. Following reduction of high tumour burden by effective cytotoxic agents, two major immune-stimulating approaches are being pursued. First, innate immunity can be activated by monoclonal antibodies triggering antibody-dependent cellular cytotoxicity. Second, tumour-specific T cell responses can be generated by immunization of patients with peptides derived from tumour antigens and infused in soluble form or loaded onto dendritic cells. The choice of cytotoxic agents for such combinatory regimens is crucial since most substances such as fludarabine are considered immunosuppressive while others such as cyclophosphamide can have immunostimulatory activity. We tested in this study whether fludarabine and/or cyclophosphamide, which represent a very effective treatment regimen for chronic lymphocytic leukaemia, would interfere with a therapeutic strategy of T cell activation. Analysis of peripheral blood samples from patients prior and during fludarabine/cyclophosphamide therapy revealed rapid and sustained reduction of tumour cells but also of CD4+ and CD8+ T cells. This correlated with a significant cytotoxic activity of fludarabine/cyclophosphamide on T cells in vitro. Unexpectedly, T cells surviving fludarabine/cyclophosphamide treatment in vitro had a more mature phenotype, while fludarabine-treated T cells were significantly more responsive to mitogenic stimulation than their untreated counterparts and showed a shift towards TH1 cytokine secretion. In conclusion, fludarabine/cyclophosphamide therapy though inducing significant and relevant T cell depletion seems to generate a micromilieu suitable for subsequent T cell activation
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
Prion Protein Is a Key Determinant of Alcohol Sensitivity through the Modulation of N-Methyl-D-Aspartate Receptor (NMDAR) Activity
The prion protein (PrP) is absolutely required for the development of prion diseases; nevertheless, its physiological functions in the central nervous system remain elusive. Using a combination of behavioral, electrophysiological and biochemical approaches in transgenic mouse models, we provide strong evidence for a crucial role of PrP in alcohol sensitivity. Indeed, PrP knock out (PrP−/−) mice presented a greater sensitivity to the sedative effects of EtOH compared to wild-type (wt) control mice. Conversely, compared to wt mice, those over-expressing mouse, human or hamster PrP genes presented a relative insensitivity to ethanol-induced sedation. An acute tolerance (i.e. reversion) to ethanol inhibition of N-methyl-D-aspartate (NMDA) receptor-mediated excitatory post-synaptic potentials in hippocampal slices developed slower in PrP−/− mice than in wt mice. We show that PrP is required to induce acute tolerance to ethanol by activating a Src-protein tyrosine kinase-dependent intracellular signaling pathway. In an attempt to decipher the molecular mechanisms underlying PrP-dependent ethanol effect, we looked for changes in lipid raft features in hippocampus of ethanol-treated wt mice compared to PrP−/− mice. Ethanol induced rapid and transient changes of buoyancy of lipid raft-associated proteins in hippocampus of wt but not PrP−/− mice suggesting a possible mechanistic link for PrP-dependent signal transduction. Together, our results reveal a hitherto unknown physiological role of PrP on the regulation of NMDAR activity and highlight its crucial role in synaptic functions
- …