2,782 research outputs found

    Open courseware as an example for user-centric innovation in higher education – towards a new social role of the university

    Get PDF
    The use of information and communication technology (ICT) in education has been touted as the solution to many of the challenges faced by higher education. ICTs were expected to revolutionise the way we teach and learn, increase access to higher education for all, and improve quality – while greatly reducing cost. As a result public and private institutions have been under pressure to integrate ICTs in their activities, and new virtual institutions were created to offer online teaching and degrees.Peer Reviewe

    The Role of Plasmacytoid Dendritic Cells in Innate and Adaptive Immune Responses against Alpha Herpes Virus Infections

    Get PDF
    In 1999, two independent groups identified plasmacytoid dendritic cells (PDC) as major type I interferon- (IFN-) producing cells in the blood. Since then, evidence is accumulating that PDC are a multifunctional cell population effectively coordinating innate and adaptive immune responses. This paper focuses on the role of different immune cells and their interactions in the surveillance of alpha herpes virus infections, summarizes current knowledge on PDC surface receptors and their role in direct cell-cell contacts, and develops a risk factor model for the clinical implications of herpes simplex and varicella zoster virus reactivation. Data from studies involving knockout mice and cell-depletion experiments as well as human studies converge into a “spider web”, in which the direct and indirect crosstalk between many cell populations tightly controls acute, latent, and recurrent alpha herpes virus infections. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses more extensively than previously thought


    Get PDF
    This policy paper draws on data from the Household and Individual Access and Usage Survey conducted across 17 African countries regarding connectivity and access to ICTs. The paper proposes that the stock of citizens with completed secondary and tertiary education is the best indicator for computer and internet skills. This research identifies an indicator that captures e-skills better than existing indicators in use. E-skills permit those who have them to participate more effectively in the global information economy and society, access opportunities to conduct business, and engage and transact more efficiently

    An artificial Rb atom in a semiconductor with lifetime-limited linewidth

    Get PDF
    We report results important for the creation of a best-of-both-worlds quantum hybrid system consisting of a solid-state source of single photons and an atomic ensemble as quantum memory. We generate single photons from a GaAs quantum dot (QD) frequency-matched to the Rb D2-transitions and then use the Rb transitions to analyze spectrally the quantum dot photons. We demonstrate lifetime-limited QD linewidths (1.48 GHz) with both resonant and non-resonant excitation. The QD resonance fluorescence in the low power regime is dominated by Rayleigh scattering, a route to match quantum dot and Rb atom linewidths and to shape the temporal wave packet of the QD photons. Noise in the solid-state environment is relatively benign: there is a blinking of the resonance fluorescence at MHz rates but negligible upper state dephasing of the QD transition. We therefore establish a close-to-ideal solid-state source of single photons at a key wavelength for quantum technologies

    Effect of omega-3 polyunsaturated fatty acids on the cytoskeleton: An open-label intervention study

    Get PDF
    Background: Omega-3 polyunsaturated fatty acids (n-3 PUFAs) show beneficial effects on cardiovascular health and cognitive functions, but the underlying molecular mechanisms are not completely understood. Because of the fact that cytoskeleton dynamics affect almost every cellular process, the regulation of cytoskeletal dynamics could be a new pathway by which n-3 PUFAs exert their effects on cellular level. Methods: A 12-week open-label intervention study with 12 healthy men was conducted to determine the effects of 2.7 g/d n-3 PUFA on changes in mRNA expression of cytoskeleton-associated genes by quantitative real-time PCR in whole blood. Furthermore, the actin content in red blood cells was analyzed by immunofluorescence imaging. Results: N-3 PUFA supplementation resulted in a significant down-regulation of cytoskeleton-associated genes, in particular three GTPases (RAC1, RHOA, CDC42), three kinases (ROCK1, PAK2, LIMK), two Wiskott-Aldrich syndrome proteins (WASL, WASF2) as well as actin related protein 2/3 complex (ARPC2, ARPC3) and cofilin (CFL1). Variability in F-actin content between subjects was high; reduced actin content was only reduced within group evaluation. Conclusions: Reduced cytoskeleton-associated gene expression after n-3 PUFA supplementation suggests that regulation of cytoskeleton dynamics might be an additional way by which n-3 PUFAs exert their cellular effects. Concerning F-actin, this analysis did not reveal unmistakable results impeding a generalized conclusion

    Correlations between Optical Properties and Voronoi-Cell Area of Quantum Dots

    Full text link
    A semiconductor quantum dot (QD) can generate highly indistinguishable single-photons at a high rate. For application in quantum communication and integration in hybrid systems, control of the QD optical properties is essential. Understanding the connection between the optical properties of a QD and the growth process is therefore important. Here, we show for GaAs QDs, grown by infilling droplet-etched nano-holes, that the emission wavelength, the neutral-to-charged exciton splitting, and the diamagnetic shift are strongly correlated with the capture zone-area, an important concept from nucleation theory. We show that the capture-zone model applies to the growth of this system even in the limit of a low QD-density in which atoms diffuse over μ\mum-distances. The strong correlations between the various QD parameters facilitate preselection of QDs for applications with specific requirements on the QD properties; they also suggest that a spectrally narrowed QD distribution will result if QD growth on a regular lattice can be achieved

    Regulation of lipid metabolism-related gene expression in whole blood cells of normo- and dyslipidemic men after fish oil supplementation

    Get PDF
    Background: Beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on the lipid levels of dyslipidemic subjects are widely described in the literature. However, the underlying molecular mechanisms are largely unknown. The aim of this study was to investigate the effects of n-3 PUFAs on the expression of lipid metabolism-related genes in normo- and dyslipidemic men to unveil potential genes and pathways affecting lipid metabolism. Methods. Ten normo- and ten dyslipidemic men were supplemented for twelve weeks with six fish oil capsules per day, providing 1.14 g docosahexaenoic acid and 1.56 g eicosapentaenoic acid. The gene expression levels were determined by whole genome microarray analysis and quantitative real-time polymerase chain reaction. Results: Several transcription factors (peroxisome proliferator-activated receptor α (PPARα), retinoid X receptor (RXR) α, RXRγ, hepatic nuclear factor (HNF) 6, and HNF1ß) as well as other genes related to triacylglycerol (TG) synthesis or high-density lipoprotein (HDL-C) and cholesterol metabolism (phospholipids transfer protein, ATP-binding cassette sub-family G member 5, 2-acylglycerol O-acyltransferase (MOGAT) 3, MOGAT2, diacylglycerol O-acyltransferase 1, sterol O-acyltransferase 1, apolipoprotein CII, and low-density lipoprotein receptor) were regulated after n-3 PUFA supplementation, especially in dyslipidemic men. Conclusion: Gene expression analyses revealed several possible molecular pathways by which n-3 PUFAs lower the TG level and increase the HDL-C and low-density lipoprotein level, whereupon the regulation of PPARα appear to play a central role. Trial registration. ClinicalTrials.gov (ID: NCT01089231).BMB

    Large-Range Frequency Tuning of a Narrow-Linewidth Quantum Emitter

    Get PDF
    A hybrid system of a semiconductor quantum dot single photon source and a rubidium quantum memory represents a promising architecture for future photonic quantum repeaters. One of the key challenges lies in matching the emission frequency of quantum dots with the transition frequency of rubidium atoms while preserving the relevant emission properties. Here, we demonstrate the bidirectional frequency-tuning of the emission from a narrow-linewidth (close-to-transform-limited) quantum dot. The frequency tuning is based on a piezoelectric strain-amplification device, which can apply significant stress to thick bulk samples. The induced strain shifts the emission frequency of the quantum dot over a total range of 1.15 THz1.15\ \text{THz}, about three orders of magnitude larger than its linewidth. Throughout the whole tuning process, both the spectral properties of the quantum dot and its single-photon emission characteristics are preserved. Our results show that external stress can be used as a promising tool for reversible frequency tuning of high-quality quantum dots and pave the wave towards the realisation of a quantum dot -- rubidium atoms interface for quantum networking.Comment: 6 pages, 3 figure

    On the Use of Network Flow Techniques for Assigning Evacuees to Exits

    Get PDF
    We apply network flow techniques to find good exit selections for evacuees in an emergency evacuation. More precisely, we present two algorithms for computing exit distributions using both classical flows and flows over time which are well known from combinatorial optimization. The performance of these new proposals is compared to a simple shortest path approach and to a best response dynamics approach by using a cellular automaton model

    Coding RNAs with a non-coding function: Maintenance of open chromatin structure

    Get PDF
    The multi-layered organization of the genome in a large nucleoprotein complex termed chromatin regulates nuclear functions by establishing subcompartments with distinct DNA-associated activities. Here, we demonstrate that RNA plays an important role in maintaining a decondensed and biologically active interphase chromatin conformation in human and mouse cell lines. As shown by RNase A microinjection and fluorescence microscopy imaging, digestion of single-stranded RNAs induced a distinct micrometer scale chromatin aggregation of these decondensed regions. In contrast, pericentric heterochromatin was more resistant to RNase A treatment. We identified a class of coding RNA transcripts that are responsible for this activity, and thus termed these ‘chromatin-interlinking’ RNAs or ciRNAs. The initial chromatin distribution could be restored after RNase A treatment with a purified nuclear RNA fraction that was analyzed by high-throughput sequencing. It comprised long >500 nucleotides (nt) RNA polymerase II (RNAP II) transcripts that were spliced, depleted of polyadenylation and was enriched with long 3'-untranslated regions (3’-UTRs) above ~800 nt in length. Furthermore, similar reversible changes of the chromatin conformation and the RNAP II distribution were induced by either RNA depletion or RNAP II inhibition. Based on these results we propose that ciRNAs could act as genome organizing architectural factors of actively transcribed chromatin compartments