66,156 research outputs found
GEOS-20 m cable boom mechanism
The GEOS cable boom mechanism allows the controlled deployment of a 20 m long cable in a centrifugal force field. In launch configuration the flat cable is reeled on a 240 mm diameter drum. The electrical connection between the rotating drum and the stationary housing is accomplished via a flexlead positioned inside the drum. Active motion control of this drum is achieved by a self locking worm gear, driven by a stepper motor. The deployment length of the cable is monitored by an optical length indicator, sensing black bars engraved on the cable surface
Unifying Magnons and Triplons in Stripe-Ordered Cuprate Superconductors
Based on a two-dimensional model of coupled two-leg spin ladders, we derive a
unified picture of recent neutron scattering data of stripe-ordered
La_(15/8)Ba_(1/8)CuO_4, namely of the low-energy magnons around the
superstructure satellites and of the triplon excitations at higher energies.
The resonance peak at the antiferromagnetic wave vector Q_AF in the
stripe-ordered phase corresponds to a saddle point in the dispersion of the
magnetic excitations. Quantitative agreement with the neutron data is obtained
for J= 130-160 meV and J_cyc/J = 0.2-0.25.Comment: 4 pages, 4 figures included updated version taking new data into
account; factor in spectral weight corrected; Figs. 2 and 4 change
An optimal control approach to pilot/vehicle analysis and Neal-Smith criteria
The approach of Neal and Smith was merged with the advances in pilot modeling by means of optimal control techniques. While confirming the findings of Neal and Smith, a methodology that explicitly includes the pilot's objective in attitude tracking was developed. More importantly, the method yields the required system bandwidth along with a better pilot model directly applicable to closed-loop analysis of systems in any order
Modified optimal control pilot model for computer-aided design and analysis
This paper presents the theoretical development of a modified optimal control pilot model based upon the optimal control model (OCM) of the human operator developed by Kleinman, Baron, and Levison. This model is input compatible with the OCM and retains other key aspects of the OCM, such as a linear quadratic solution for the pilot gains with inclusion of control rate in the cost function, a Kalman estimator, and the ability to account for attention allocation and perception threshold effects. An algorithm designed for each implementation in current dynamic systems analysis and design software is presented. Example results based upon the analysis of a tracking task using three basic dynamic systems are compared with measured results and with similar analyses performed with the OCM and two previously proposed simplified optimal pilot models. The pilot frequency responses and error statistics obtained with this modified optimal control model are shown to compare more favorably to the measured experimental results than the other previously proposed simplified models evaluated
Diffraction in QCD
This lecture presents a short review of the main features of diffractive
processes and QCD inspired models. It includes the following topics: (1)
Quantum mechanics of diffraction: general properties; (2) Color dipole
description of diffraction; (3) Color transparency; (4) Soft diffraction in
hard reactions: DIS, Drell-Yan, Higgs production; (5) Why Pomerons interact
weakly; (6) Small gluonic spots in the proton; (7) Diffraction near the
unitarity bound: the Goulianos-Schlein "puzzle"; (8) Diffraction on nuclei:
diffractive Color Glass; (9) CGC and gluon shadowing.Comment: Based on the lecture given by B.K. at I LAWHEP, Porto Alegre, Brazil,
December 1-3, 200
- …