23,484 research outputs found

    A self consistent field approach to surfaces of compressible polymer blends

    Full text link
    A self consistent field theory for compressible polymer mixtures is developed by introducing elements of classical density functional theory into the framework of the Helfand theory. It is then applied to study free surfaces of binary (A,B) polymer blends. Density profiles in the one- and two-phase region are calculated as well as chain end distributions and chain orientations of the minority and the majority component. In the ideally symmetric mixture, in which the individual properties of polymers A and B are the same and both have the same surface energy, polymers of the minority component segregate to the surface, where they are exposed to less polymers of the majority component. This effect can only be captured correctly, if one accounts for the fact that the monomer-monomer interaction has finite range. As a consequence, the Flory-Huggins-parameter varies in space and depends on the concentration profiles and their derivatives. The surface segregation calculated with such an ansatz, without any fit parameter, is in reasonable quantitative agreement with data from recent Monte Carlo simulations.Comment: 45 pages, latex, 12 figures, accepted by the Journal of Chemical physic

    Reply to Comment on: "Are stress-free membranes really 'tensionless'?"

    Full text link
    This is a reply to a comment on the paper arXiv:1204.2075 "Are stress-free membranes really tensionless ?" (EPL 95,28008 (2011))

    Phase behavior of grafted chain molecules: Influence of head size and chain length

    Full text link
    Constant pressure Monte Carlo simulations of a coarse grained off-lattice model for monolayers of amphiphilic molecules at the air/water interface are presented. Our study focusses on phase transitions within a monolayer rather than on self aggregation. We thus model the molecules as stiff chains of Lennard-Jones spheres with one slightly larger repulsive end bead (head) grafted to a planar surface. Depending on the size of the head, the temperature and the pressure, we find a variety of phases, which differ in tilt order (including tilt direction), and in positional order. In particular, we observe a modulated phase with a striped superstructure. The modulation results from the competition between two length scales, the head size and the tail diameter. As this mechanism is fairly general, it may conceivably also be relevant in experimental monolayers. We argue that the superstructure would be very difficult to detect in a scattering experiment, which perhaps accounts for the fact that it has not been reported so far. Finally the effect of varying the chain length on the phase diagram is discussed. Except at high pressures and temperatures, the phase boundaries in systems with longer chains are shifted to higher temperatures.Comment: To appear in J. Chem. Phy

    Monte Carlo simulations of interfaces in polymer blends

    Full text link
    We review recent simulation studies of interfaces between immiscible homopolymer phases. Special emphasis is given to the presentation of efficient simulation techniques and powerful methods of data analysis, such as the analysis of capillary wave spectra. Possible reasons for polymer incompatibility and ways to relate model dependent interaction parameters to an effective Flory Huggins parameter are discussed. Various interfaces are then considered and characterised with respect to their microscopic structure and thermodynamic properties. In particular, interfaces between homopolymers of equal or disparate stiffness are studied, interfaces containing diblock copolymers, and interfaces confined in thin films. The results are related to the phase behaviour of ternary homopolymer/copolymer systems, and to wetting transitions in thin films.Comment: To appear in Annual Reviews of Computational Physics, edt. D. Stauffe

    Errors in Monte Carlo simulations using shift register random number generators

    Full text link
    We report large systematic errors in Monte Carlo simulations of the tricritical Blume-Capel model using single spin Metropolis updating. The error, manifest as a 20%20\% asymmetry in the magnetisation distribution, is traced to the interplay between strong triplet correlations in the shift register random number generator and the large tricritical clusters. The effect of these correlations is visible only when the system volume is a multiple of the random number generator lag parameter. No such effects are observed in related models.Comment: 7 pages Revtex, 4 ps figures (uuencoded). Paper also available from: http://moses.physik.uni-mainz.de/~wilding/home_wilding.htm

    Heat exchanger method, ingot casting; fixed abrasive method, multi-wire slicing, phase 2. Silicon sheet growth development for the large area sheet task of the low cost silicon solar array project

    Get PDF
    A crack-free silicon ingot has been cast in a graded, semiconductor purity silica crucible. More than 90% single crystallinity has been achieved in 2.5 kg cast ingots. The impurities on the surface of the melt have been reduced with the use of a rapid heat-up cycle and absence of graphite retainers. Solar cells fabricated out of HEM cast material have shown conversion efficiency up to 14% under AM1 Xenon source illumination. Considerable progress has been achieved in casting square cross-section ingots. The growth in the corners has been obtained but the problem area is in fabricating a custom-made graded crucible. Kerf loss was reduced to 6.2 mil, 0.155 mm in slicing 4 cm x 4 cm cross-section with 100% yield. The abrasive life of plated impregnated blades was increased by hardening the electroless nickel layer. In an effort to prevent diamond pull-out and thereby improve the abrasive life, the plated layer was increased from 0.3 mil, 7.5 ..mu..m to 0.5 mil, 12.5 ..mu..m. The extra thickness buried the diamonds. A thinner copper sheath for impregnation and a thicker nickel coating to prevent diamond pull-out is expected to improve the abrasive life. Higher feed forces increased the cutting rates but resulted in deeper surface damage

    Grafted Rods: A Tilting Phase Transition

    Full text link
    A tilting phase transition is predicted for systems comprising rod like molecules which are irreversibly grafted to a flat surface, so that the non interacting rods are perpendicularly oriented. The transition is controlled by the grafting density ρ\rho. It occurs as ρ\rho increases as a result of the interplay between two energies. Tilt is favoured by the van-der-Waals attraction between the rods. It is opposed by the bending elasticity of the grafting functionality. The role of temperature is discussed, and the tilting mechanism is compared to other tilting transitions reported in the literature.Comment: 21 pages, 2 figures, to appear in Journal de Physique I
    corecore