171 research outputs found

### Progress on Polynomial Identity Testing - II

We survey the area of algebraic complexity theory; with the focus being on
the problem of polynomial identity testing (PIT). We discuss the key ideas that
have gone into the results of the last few years.Comment: 17 pages, 1 figure, surve

### Blackbox identity testing for bounded top fanin depth-3 circuits: the field doesn't matter

Let C be a depth-3 circuit with n variables, degree d and top fanin k (called
sps(k,d,n) circuits) over base field F. It is a major open problem to design a
deterministic polynomial time blackbox algorithm that tests if C is identically
zero. Klivans & Spielman (STOC 2001) observed that the problem is open even
when k is a constant. This case has been subjected to a serious study over the
past few years, starting from the work of Dvir & Shpilka (STOC 2005).
We give the first polynomial time blackbox algorithm for this problem. Our
algorithm runs in time poly(nd^k), regardless of the base field. The only field
for which polynomial time algorithms were previously known is F=Q (Kayal &
Saraf, FOCS 2009, and Saxena & Seshadhri, FOCS 2010). This is the first
blackbox algorithm for depth-3 circuits that does not use the rank based
approaches of Karnin & Shpilka (CCC 2008).
We prove an important tool for the study of depth-3 identities. We design a
blackbox polynomial time transformation that reduces the number of variables in
a sps(k,d,n) circuit to k variables, but preserves the identity structure.Comment: 14 pages, 1 figure, preliminary versio

### Algebraic Independence and Blackbox Identity Testing

Algebraic independence is an advanced notion in commutative algebra that
generalizes independence of linear polynomials to higher degree. Polynomials
{f_1, ..., f_m} \subset \F[x_1, ..., x_n] are called algebraically independent
if there is no non-zero polynomial F such that F(f_1, ..., f_m) = 0. The
transcendence degree, trdeg{f_1, ..., f_m}, is the maximal number r of
algebraically independent polynomials in the set. In this paper we design
blackbox and efficient linear maps \phi that reduce the number of variables
from n to r but maintain trdeg{\phi(f_i)}_i = r, assuming f_i's sparse and
small r. We apply these fundamental maps to solve several cases of blackbox
identity testing:
(1) Given a polynomial-degree circuit C and sparse polynomials f_1, ..., f_m
with trdeg r, we can test blackbox D := C(f_1, ..., f_m) for zeroness in
poly(size(D))^r time.
(2) Define a spsp_\delta(k,s,n) circuit C to be of the form \sum_{i=1}^k
\prod_{j=1}^s f_{i,j}, where f_{i,j} are sparse n-variate polynomials of degree
at most \delta. For k = 2 we give a poly(sn\delta)^{\delta^2} time blackbox
identity test.
(3) For a general depth-4 circuit we define a notion of rank. Assuming there
is a rank bound R for minimal simple spsp_\delta(k,s,n) identities, we give a
poly(snR\delta)^{Rk\delta^2} time blackbox identity test for spsp_\delta(k,s,n)
circuits. This partially generalizes the state of the art of depth-3 to depth-4
circuits.
The notion of trdeg works best with large or zero characteristic, but we also
give versions of our results for arbitrary fields.Comment: 32 pages, preliminary versio

### Quasi-polynomial Hitting-set for Set-depth-Delta Formulas

We call a depth-4 formula C set-depth-4 if there exists a (unknown) partition
(X_1,...,X_d) of the variable indices [n] that the top product layer respects,
i.e. C(x) = \sum_{i=1}^k \prod_{j=1}^{d} f_{i,j}(x_{X_j}), where f_{i,j} is a
sparse polynomial in F[x_{X_j}]. Extending this definition to any depth - we
call a depth-Delta formula C (consisting of alternating layers of Sigma and Pi
gates, with a Sigma-gate on top) a set-depth-Delta formula if every Pi-layer in
C respects a (unknown) partition on the variables; if Delta is even then the
product gates of the bottom-most Pi-layer are allowed to compute arbitrary
monomials.
In this work, we give a hitting-set generator for set-depth-Delta formulas
(over any field) with running time polynomial in exp(({Delta}^2 log s)^{Delta -
1}), where s is the size bound on the input set-depth-Delta formula. In other
words, we give a quasi-polynomial time blackbox polynomial identity test for
such constant-depth formulas. Previously, the very special case of Delta=3
(also known as set-multilinear depth-3 circuits) had no known sub-exponential
time hitting-set generator. This was declared as an open problem by Shpilka &
Yehudayoff (FnT-TCS 2010); the model being first studied by Nisan & Wigderson
(FOCS 1995). Our work settles this question, not only for depth-3 but, up to
depth epsilon.log s / loglog s, for a fixed constant epsilon < 1.
The technique is to investigate depth-Delta formulas via depth-(Delta-1)
formulas over a Hadamard algebra, after applying a `shift' on the variables. We
propose a new algebraic conjecture about the low-support rank-concentration in
the latter formulas, and manage to prove it in the case of set-depth-Delta
formulas.Comment: 22 page

### Deterministic Identity Testing for Sum of Read-Once Oblivious Arithmetic Branching Programs

A read-once oblivious arithmetic branching program (ROABP) is an arithmetic
branching program (ABP) where each variable occurs in at most one layer. We
give the first polynomial time whitebox identity test for a polynomial computed
by a sum of constantly many ROABPs. We also give a corresponding blackbox
algorithm with quasi-polynomial time complexity $n^{O(\log n)}$. In both the
cases, our time complexity is double exponential in the number of ROABPs.
ROABPs are a generalization of set-multilinear depth-$3$ circuits. The prior
results for the sum of constantly many set-multilinear depth-$3$ circuits were
only slightly better than brute-force, i.e. exponential-time.
Our techniques are a new interplay of three concepts for ROABP: low
evaluation dimension, basis isolating weight assignment and low-support rank
concentration. We relate basis isolation to rank concentration and extend it to
a sum of two ROABPs using evaluation dimension (or partial derivatives).Comment: 22 pages, Computational Complexity Conference, 201

### Analyzing the impact of GST on tax revenue in India : the tax buoyancy approach

Purpose: The purpose of this paper is to analyse the impact of newly introduced Goods and Services Tax (GST) in India. This paper adopts the tax buoyancy approach for analysing the impact of GST on tax revenue. Design/Methodology/Approach: We conducted our study using semi logarithmic ANCOVA regression model in which we introduced VAT and GST as dummy variables. Findings: Our study finds that after the introduction of GST India’s tax revenue has become less responsive to the changes in GDP. It indicates that post introduction of GST there is some reduction in the tax burden on the consumers and corporates which supports the government’s justification behind the introduction of GST. Practical Implications: The study is expected to help the government in deciding the future course of action towards effective policy making for revenue generation. Originality/Value: Since none of the existing studies analyses the impact of GST on tax revenue our study is unique and fulfils the gap in the existing literature.peer-reviewe

- …