7,249 research outputs found
Homotopy operators for the variational bicomplex, representations of the Euler-Lagrange complex, and the Helmholtz-Sonin conditions
Holonomy of a class of bundles with fibre metrics
This paper is concerned with the holonomy of a class of spaces which includes Landsberg spaces of Finsler geometry. The methods used are those of Lie groupoids and algebroids as developed by Mackenzie. We prove a version of the Ambrose-Singer Theorem for such spaces. The paper ends with a discussion of how the results may be extended to Finsler spaces and homogeneous nonlinear connections in general
The average magnetic field draping and consistent plasma properties of the Venus magnetotail
A new technique has been developed to determine the average structure of the Venus magnetotail (in the range from −8 Rv to −12 Rv) from the Pioneer Venus magnetometer observations. The spacecraft position with respect to the cross-tail current sheet is determined from an observed relationship between the field-draping angle and the magnitude of the field referenced to its value in the nearby magnetosheath. This allows us statistically to remove the effects of tail flapping and variability of draping for the first time and thus to map the average field configuration in the Venus tail. From this average configuration we calculate the cross-tail current density distribution and J × B forces. Continuity of the tangential electric field is utilized to determine the average variations of the X-directed velocity which is shown to vary from −250 km/s at −8 Rv to −470 km/s at −12 Rv. From the calculated J × B forces, plasma velocity, and MHD momentum equation the approximate plasma acceleration, density, and temperature in the Venus tail are determined. The derived ion density is approximately ∼0.07 p+/cm³ (0.005 O+/cm³) in the lobes and ∼0.9 p+/cm³ (0.06 O+/cm³) in the current sheet, while the derived approximate average plasma temperature for the tail is ∼6×106 K for a hydrogen plasma or ∼9×107 K for an oxygen plasma
Geomorphic evidence for ancient seas on Mars
Geomorphic evidence is presented for ancient seas on Mars. Several features, similar to terrestrial lacustrine and coastal features, were identified along the northern plains periphery from Viking images. The nature of these features argues for formation in a predominantly liquid, shallow body of standing water. Such a shallow sea would require either relatively rapid development of shoreline morphologies or a warmer than present climate at the time of outflow channel formation
Geomorphic evidence for ancient seas in west Deuteronilus Mensae, Mars-1: Regional geomorphology
The fretted terrain in west Deuteronilus Mensae consists of extensive cratered upland penninsulas or isolated plateaus cut by long, finger-like canyons typically 10 to 20 km wide and upwards of 300 km long. The longest of these canyons trend roughly north-south to north-northeast, which may reflect some local structural and/or topographic control. At least three geomorphic zones roughly parallel to the lowland/upland boundary, suggestive of increasing modification northward, can be recognized on the fretted region of the region. The southern-most zone (zone A) consists of sharply defined fretted terrain. The middle zone (zone B) consists of well defined fretted terrain in which the plateau surfaces appear smoother, with a somewhat darker and much less varied albedo surface than those of zone A. The northern-most zone (zone C) consists of rounded or softened fretted terrain. The zones were interpreted as surface exposures of successively lower stratigraphic units
Curvilinear ridges and related features in southwest Cydonia Mensae, Mars
Examined is a region on Mars in southwest Cydonia Mensae (32 deg lat., 17 deg long.) just northwest of the lowland/upland boundary escarpment. The dominant morphological features in this region are the clusters of large massifs and plateau outliers (PI), knobby material (K), and smooth lowland plains (Ps). Surrounding the clusters and linking many isolated knobs is a system of curvilinear ridges and arcuate terrain boundaries which tend to separate the massifs and knobs from the smooth plains. Curvilinear ridges are arcuate to nearly linear and smoother in plan than wrinkle ridges and show no apparent correlation with regional structural grain. They are typically 5 to 10 km long but can range from as little as 2 or 3 km to greater than 50 km long. The widths vary from about 100 m to as much as 2 km. Curvilinear ridges are most numerous within 100 km of the lowland/upland boundary escarpment and are associated with massifs and knobby terrain. Arcuate terrain boundaries appear between units of different apparent albedo or arcuate breaks in slope
Geomorphic evidence for ancient seas in west Deuteronilus Mensae, Mars-2: From very high resolution Viking Orbiter images
Very high resolution Viking Orbiter images of the Martian surface, though rare, make it possible to examine specific areas at image scales approaching those of high altitude terrestrial aerial photographs. Twenty three clear images lie within west Deuteronilus Mensae. The northernmost images which constitute an almost unbroken mosaic of the west wall of a long fingerlike canyon are examined. Morphological details on the plateau surface within zone B, not detectable at low resolution, make it possible to divide the zone into two distinct subzones separated by an east-west escarpment. The morphology of the canyon floor is described in detail
Patient preferences for adjuvant radiotherapy in early breast cancer are strongly influenced by treatment received through random assignment
Objective: TARGIT‐A randomised women with early breast cancer to receive external beam radiotherapy (EBRT) or intraoperative radiotherapy (TARGIT‐IORT). This study aimed to identify what extra risk of recurrence patients would accept for per‐ ceived benefits and risks of different radiotherapy treatments.
Methods: Patient preferences were determined by self‐rated trade‐off question‐ naires in two studies: Stage (1) 209 TARGIT‐A participants (TARGIT‐IORT n = 108, EBRT n = 101); Stage (2) 123 non‐trial patients yet to receive radiotherapy (pre‐treat‐ ment group), with 85 also surveyed post‐radiotherapy. Patients traded‐off risks of local recurrence in preference selection between TARGIT‐IORT and EBRT.
Results: TARGIT‐IORT patients were more accepting of IORT than EBRT patients with 60% accepting the highest increased risk presented (4%–6%) compared to 12% of EBRT patients, and 2% not accepting IORT at all compared to 43% of EBRT pa‐ tients. Pre‐treatment patients were more accepting of IORT than post‐treatment pa‐ tients with 23% accepting the highest increased risk presented compared to 15% of post‐treatment patients, and 15% not accepting IORT at all compared to 41% of pre‐ treatment patients.
Conclusions: Breast cancer patients yet to receive radiotherapy accept a higher recurrence risk than the actual risk found in TARGIT‐A. Measured patient preferences are highly influenced by experience of treatment received. This finding challenges the validity of post‐treatment preference studies
An Experimental Evaluation of the Performance of Two Combination Pitot Pressure Probes
Experimental tests have been completed which recorded the ability of two combination steady state and high response time varying Pitot probe designs to accurately measure steady stagnation pressure at a single location in a flow field. Tests were conducted of double-barreled and coannular Prati probes in a 3.5 in. diameter free jet probe calibration facility from Mach 0.1 to 0.9. Geometric symmetry and pitch (-40 deg to 40 deg) and yaw (0 deg to 40 deg) angle actuation were used to fully evaluate the probes. These tests revealed that the double-barreled configuration induced error in its steady state measurement at zero incidence that increased consistently with jet Mach number to 1.1 percent at Mach 0.9. For all Mach numbers, the double-barreled probe nulled at a pitch angle of approximately 7.0 deg and provided inconsistent measurements when yawed. The double-barreled probe provided adequate measurements via both its steady state and high response tubes (within +/- 0.15 percent accuracy) over unacceptable ranges of biased pitch and inconsistent yaw angles which varied with Mach number. By comparison, the coannular probe provided accurate measurements (at zero incidence) for all jet Mach numbers as well as over a flow angularity range which varied from +/- 26.0 deg at Mach 0.3 deg to +/- 14.0 deg at Mach 0.9. Based on these results, the Prati probe is established as the preferred design. Further experimental tests are recommended to document the frequency response characteristics of the Prati probe
Calibration of the NASA Glenn Research Center 16 in. Mass-Flow Plug
The results of an experimental calibration of the NASA Glenn Research Center 16 in. Mass-Flow Plug (MFP) are presented and compared to a previously obtained calibration of a 15 in. Mass-Flow Plug. An ASME low-beta, long-radius nozzle was used as the calibration reference. The discharge coefficient for the ASME nozzle was obtained by numerically simulating the flow through the nozzle from the WIND-US code. The results showed agreement between the 15 and 16 in. MFPs for area ratios (MFP to pipe area ratio) greater than 0.6 but deviate at area ratios below this value for reasons that are not fully understood. A general uncertainty analysis was also performed and indicates that large uncertainties in the calibration are present for low MFP area ratios
- …