31 research outputs found

    Near-optimal Bootstrapping of Hitting Sets for Algebraic Models

    Full text link
    The classical lemma of Ore-DeMillo-Lipton-Schwartz-Zippel [Ore22,DL78,Zip79,Sch80] states that any nonzero polynomial f(x1,,xn)f(x_1,\ldots, x_n) of degree at most ss will evaluate to a nonzero value at some point on a grid SnFnS^n \subseteq \mathbb{F}^n with S>s|S| > s. Thus, there is an explicit hitting set for all nn-variate degree ss, size ss algebraic circuits of size (s+1)n(s+1)^n. In this paper, we prove the following results: - Let ϵ>0\epsilon > 0 be a constant. For a sufficiently large constant nn and all s>ns > n, if we have an explicit hitting set of size (s+1)nϵ(s+1)^{n-\epsilon} for the class of nn-variate degree ss polynomials that are computable by algebraic circuits of size ss, then for all ss, we have an explicit hitting set of size sexpexp(O(logs))s^{\exp \circ \exp (O(\log^\ast s))} for ss-variate circuits of degree ss and size ss. That is, if we can obtain a barely non-trivial exponent compared to the trivial (s+1)n(s+1)^{n} sized hitting set even for constant variate circuits, we can get an almost complete derandomization of PIT. - The above result holds when "circuits" are replaced by "formulas" or "algebraic branching programs". This extends a recent surprising result of Agrawal, Ghosh and Saxena [AGS18] who proved the same conclusion for the class of algebraic circuits, if the hypothesis provided a hitting set of size at most (sn0.5δ)(s^{n^{0.5 - \delta}}) (where δ>0\delta>0 is any constant). Hence, our work significantly weakens the hypothesis of Agrawal, Ghosh and Saxena to only require a slightly non-trivial saving over the trivial hitting set, and also presents the first such result for algebraic branching programs and formulas.Comment: The main result has been strengthened significantly, compared to the older version of the paper. Additionally, the stronger theorem now holds even for subclasses of algebraic circuits, such as algebraic formulas and algebraic branching program

    Constructing Faithful Homomorphisms over Fields of Finite Characteristic

    Full text link
    We study the question of algebraic rank or transcendence degree preserving homomorphisms over finite fields. This concept was first introduced by Beecken, Mittmann and Saxena (Information and Computing, 2013), and exploited by them, and Agrawal, Saha, Saptharishi and Saxena (Journal of Computing, 2016) to design algebraic independence based identity tests using the Jacobian criterion over characteristic zero fields. An analogue of such constructions over finite characteristic fields was unknown due to the failure of the Jacobian criterion over finite characteristic fields. Building on a recent criterion of Pandey, Sinhababu and Saxena (MFCS, 2016), we construct explicit faithful maps for some natural classes of polynomials in the positive characteristic field setting, when a certain parameter called the inseparable degree of the underlying polynomials is bounded (this parameter is always 1 in fields of characteristic zero). This presents the first generalisation of some of the results of Beecken et al. and Agrawal et al. in the positive characteristic setting

    Constructing Faithful Homomorphisms over Fields of Finite Characteristic

    Get PDF
    We study the question of algebraic rank or transcendence degree preserving homomorphisms over finite fields. This concept was first introduced by Beecken et al. [Malte Beecken et al., 2013] and exploited by them and Agrawal et al. [Manindra Agrawal et al., 2016] to design algebraic independence based identity tests using the Jacobian criterion over characteristic zero fields. An analogue of such constructions over finite characteristic fields were unknown due to the failure of the Jacobian criterion over finite characteristic fields. Building on a recent criterion of Pandey, Saxena and Sinhababu [Anurag Pandey et al., 2018], we construct explicit faithful maps for some natural classes of polynomials in fields of positive characteristic, when a certain parameter called the inseparable degree of the underlying polynomials is bounded (this parameter is always 1 in fields of characteristic zero). This presents the first generalisation of some of the results of Beecken, Mittmann and Saxena [Malte Beecken et al., 2013] and Agrawal, Saha, Saptharishi, Saxena [Manindra Agrawal et al., 2016] in the positive characteristic setting

    Functional lower bounds for arithmetic circuits and connections to boolean circuit complexity

    Get PDF
    We say that a circuit CC over a field FF functionally computes an nn-variate polynomial PP if for every x{0,1}nx \in \{0,1\}^n we have that C(x)=P(x)C(x) = P(x). This is in contrast to syntactically computing PP, when CPC \equiv P as formal polynomials. In this paper, we study the question of proving lower bounds for homogeneous depth-33 and depth-44 arithmetic circuits for functional computation. We prove the following results : 1. Exponential lower bounds homogeneous depth-33 arithmetic circuits for a polynomial in VNPVNP. 2. Exponential lower bounds for homogeneous depth-44 arithmetic circuits with bounded individual degree for a polynomial in VNPVNP. Our main motivation for this line of research comes from our observation that strong enough functional lower bounds for even very special depth-44 arithmetic circuits for the Permanent imply a separation between #P{\#}P and ACCACC. Thus, improving the second result to get rid of the bounded individual degree condition could lead to substantial progress in boolean circuit complexity. Besides, it is known from a recent result of Kumar and Saptharishi [KS15] that over constant sized finite fields, strong enough average case functional lower bounds for homogeneous depth-44 circuits imply superpolynomial lower bounds for homogeneous depth-55 circuits. Our proofs are based on a family of new complexity measures called shifted evaluation dimension, and might be of independent interest

    A note on the elementary HDX construction of Kaufman-Oppenheim

    Full text link
    In this note, we give a self-contained and elementary proof of the elementary construction of spectral high-dimensional expanders using elementary matrices due to Kaufman and Oppenheim [Proc. 50th ACM Symp. on Theory of Computing (STOC), 2018]

    An Exponential Lower Bound for Homogeneous Depth-5 Circuits over Finite Fields

    Get PDF
    In this paper, we show exponential lower bounds for the class of homogeneous depth-5 circuits over all small finite fields. More formally, we show that there is an explicit family {P_d} of polynomials in VNP, where P_d is of degree d in n = d^{O(1)} variables, such that over all finite fields GF(q), any homogeneous depth-5 circuit which computes P_d must have size at least exp(Omega_q(sqrt{d})). To the best of our knowledge, this is the first super-polynomial lower bound for this class for any non-binary field. Our proof builds up on the ideas developed on the way to proving lower bounds for homogeneous depth-4 circuits [Gupta et al., Fournier et al., Kayal et al., Kumar-Saraf] and for non-homogeneous depth-3 circuits over finite fields [Grigoriev-Karpinski, Grigoriev-Razborov]. Our key insight is to look at the space of shifted partial derivatives of a polynomial as a space of functions from GF(q)^n to GF(q) as opposed to looking at them as a space of formal polynomials and builds over a tighter analysis of the lower bound of Kumar and Saraf [Kumar-Saraf]

    Jacobian hits circuits: Hitting-sets, lower bounds for depth-D occur-k formulas & depth-3 transcendence degree-k circuits

    Full text link
    We present a single, common tool to strictly subsume all known cases of polynomial time blackbox polynomial identity testing (PIT) that have been hitherto solved using diverse tools and techniques. In particular, we show that polynomial time hitting-set generators for identity testing of the two seemingly different and well studied models - depth-3 circuits with bounded top fanin, and constant-depth constant-read multilinear formulas - can be constructed using one common algebraic-geometry theme: Jacobian captures algebraic independence. By exploiting the Jacobian, we design the first efficient hitting-set generators for broad generalizations of the above-mentioned models, namely: (1) depth-3 (Sigma-Pi-Sigma) circuits with constant transcendence degree of the polynomials computed by the product gates (no bounded top fanin restriction), and (2) constant-depth constant-occur formulas (no multilinear restriction). Constant-occur of a variable, as we define it, is a much more general concept than constant-read. Also, earlier work on the latter model assumed that the formula is multilinear. Thus, our work goes further beyond the results obtained by Saxena & Seshadhri (STOC 2011), Saraf & Volkovich (STOC 2011), Anderson et al. (CCC 2011), Beecken et al. (ICALP 2011) and Grenet et al. (FSTTCS 2011), and brings them under one unifying technique. In addition, using the same Jacobian based approach, we prove exponential lower bounds for the immanant (which includes permanent and determinant) on the same depth-3 and depth-4 models for which we give efficient PIT algorithms. Our results reinforce the intimate connection between identity testing and lower bounds by exhibiting a concrete mathematical tool - the Jacobian - that is equally effective in solving both the problems on certain interesting and previously well-investigated (but not well understood) models of computation

    Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees

    Get PDF
    We study the class of non-commutative Unambiguous circuits or Unique-Parse-Tree (UPT) circuits, and a related model of Few-Parse-Trees (FewPT) circuits (which were recently introduced by Lagarde, Malod and Perifel [Guillaume Lagarde et al., 2016] and Lagarde, Limaye and Srinivasan [Guillaume Lagarde et al., 2017]) and give the following constructions: - An explicit hitting set of quasipolynomial size for UPT circuits, - An explicit hitting set of quasipolynomial size for FewPT circuits (circuits with constantly many parse tree shapes), - An explicit hitting set of polynomial size for UPT circuits (of known parse tree shape), when a parameter of preimage-width is bounded by a constant. The above three results are extensions of the results of [Manindra Agrawal et al., 2015], [Rohit Gurjar et al., 2015] and [Rohit Gurjar et al., 2016] to the setting of UPT circuits, and hence also generalize their results in the commutative world from read-once oblivious algebraic branching programs (ROABPs) to UPT-set-multilinear circuits. The main idea is to study shufflings of non-commutative polynomials, which can then be used to prove suitable depth reduction results for UPT circuits and thereby allow a careful translation of the ideas in [Manindra Agrawal et al., 2015], [Rohit Gurjar et al., 2015] and [Rohit Gurjar et al., 2016]
    corecore