10 research outputs found

    Effect of Conjugated Linoleic Acid Feeding on the Growth Performance and Meat Fatty Acid Profiles in Broiler: Meta-analysis

    Get PDF
    The effect of conjugated linoleic acid (CLA) feeding on growth performance and fatty acid profiles in thigh meat of broiler chicken was investigated using meta-analysis with a total of 9 studies. Overall effects were calculated by standardized mean differences between treatment (CLA fed) and control using Hedges’s adjusted g from fixed and random effect models. Meta-regression was conducted to evaluate the effect of CLA levels. Subgroups in the same study were designated according to used levels of CLA, CP levels or substituted oils in diets. The effects on final body weight, weight gain, feed intake and feed conversion ratio were investigated as growth parameters. Total saturated and unsaturated fatty acid concentrations and C16:0, C18:0, C18:2 and C18:3 concentrations in thigh meat of broiler chicken were used as fatty acid profile parameters. The overall effect of CLA feeding on final weight was negative and it was only significant in fixed effect model (p<0.01). Significantly lower weight gain, feed intake and higher feed conversion ratio compared to control were found (p<0.05). CLA feeding on the overall increased total saturated fatty acid concentration in broilers compared to the control diet (p<0.01). Total unsaturated fatty acid concentration was significantly decreased by CLA feeding (p<0.01). As for individual fatty acid profiles, C16:0, C18:0 and C18:3 were increased and C18:2 was significantly decreased by CLA feeding (p<0.01). In conclusion, CLA was proved not to be beneficial for improving growth performance, whereas it might be supposed that CLA is effective modulating n-6/n-3 fatty acids ratio in thigh meat. However, the economical compensation of the loss from suppressed growth performance and increased saturated fatty acids with the benefit from enhanced n-6/n-3 ratio should be investigated in further studies in order to propose an appropriate use of dietary CLA in the broiler industry

    Effectiveness of Chitosan as a Dietary Supplement in Lowering Cholesterol in Murine Models: A Meta-Analysis

    No full text
    This study presents a meta-analysis of studies that investigate the effectiveness of chitosan administration on lifestyle-related disease in murine models. A total of 34 published studies were used to evaluate the effect of chitosan supplementation. The effect sizes for various items after chitosan administration were evaluated using the standardized mean difference. Using Cochran&rsquo;s Q test, the heterogeneity of effect sizes was assessed, after which a meta-ANOVA and -regression test was conducted to explain the heterogeneity of effect sizes using the mixed-effect model. Publication bias was performed using Egger&rsquo;s linear regression test. Among the items evaluated, blood triglyceride and HDL-cholesterol showed the highest heterogeneity, respectively. Other than blood HDL-cholesterol, total cholesterol, and triglyceride in feces, most items evaluated showed a negative effect size with high significance in the fixed- and random-effect model (p &lt; 0.0001). In the meta-ANOVA and -regression test, administering chitosan and resistant starch was revealed to be most effective in lowering body weight. In addition, chitosan supplementation proved to be an effective solution for serum TNF-&alpha; inhibition. In conclusion, chitosan has been shown to be somewhat useful in improving symptoms of lifestyle-related disease. Although there are some limitations in the results of this meta-analysis due to the limited number of animal experiments conducted, chitosan administration nevertheless shows promise in reducing the risk of cholesterol related metabolic disorder

    Development of prediction model for body weight and energy balance indicators from milk traits in lactating dairy cows based on deep neural networks

    No full text
    To develop a body weight (BW) prediction model using milk production traits and present a useful indicator for energy balance (EB) evaluation in dairy cows. Data were collected from 30 Holstein cows using an automatic milking system. BW prediction models were developed using multiple linear regression (MLR), local regression (LOESS), and deep neural networks (DNN). Milk production traits readily available on commercial dairy farms, such as energy-corrected milk (ECM), fat-to-protein ratio, days in milk (DIM), and parity, were used as input variables for BW prediction. The EB was evaluated as the difference between energy intake and energy demand. The DNN model showed the greatest predictive accuracy for BW compared with the LOESS and MLR models. The BW predicted using the DNN model was used to calculate the energy demand. Our results revealed that the day on which the EB status transitioned from negative to positive differed among cows. The cows were assigned to one of the three EB index groups. EB index 1 indicated that the day of EB transition was within DIM ≤ 70. The EB indexes 2 and 3 were 70 < DIM ≤ 140 and 140 < DIM ≤ 305, respectively. EB index 3 had the lowest EB, which is the slowest to transition from a negative to a positive energy balance compared with EB indexes 1 and 2. The highest ECM and feed efficiency were observed for EB index 3. The calving interval was the shortest for EB index 1. EB of individual cows during lactation can be estimated and monitored with moderately high accuracy using EB indexes

    and evaluation of kenaf ( L.) as a roughage source for beef cattle

    No full text
    Objective The goal of this study was to evaluate kenaf as a roughage source in vitro and its effects on meat quality of Hanwoo (Korean native) cattle. Methods Three roughage materials, rice straw silage, ryegrass silage, and kenaf silage, were tested in a batch culture and feeding trial. Rumen fermentation parameters, including gas, pH, volatile fatty acid (VFA), and ammonia were analyzed. In the feeding trial, Hanwoo steers (373.5±5.1 kg, n = 36, 11 month of age) were divided into three feeding groups (n = 12 each). Animals were fed with each silage and concentrate until the fattening stage. Results Crude protein, ether extract, and non-structural carbohydrates were greater in kenaf silage. Total gas production was higher in ryegrass silage, followed by kenaf silage and rice straw silage (p0.05). Conclusion The results indicated that no negative effects on growth performance and carcass characteristics occurred across treatments. Therefore, kenaf could be substituted for rice straw, which is most widely used as a roughage source in Korea

    Effect of Encapsulating Nitrate in Sesame Gum on Rumen Fermentation Parameters

    No full text
    Encapsulation is a method used to protect material from certain undesirable environments, for controlled release at a more favorable time and place. Animal productivity would be enhanced if feed additives are delivered to be utilized at their site of action, bypassing the rumen where they are likely to be degraded by microbial action. A novel method of encapsulation with sesame gum was used to coat nitrate, a known enteric methane mitigating agent, and tested for the effect on methane reduction and other in vitro fermentation parameters using rumen fluid from cannulated Hanwoo steers. Orchard grass was used as basal diet for fermentation. The treatments were matrix (1.1 g sesame gum+0.4 g sesame oil cake) only, encapsulated nitrate (matrix+nitrate [21 mM]), free nitrate (21 mM), and a control that contained no additive. Analyses of fermentation parameters were done at 0, 3, 6, 9, 12, 24, and 48 h time periods. In comparison to control, both free and encapsulated nitrate produced significantly reduced (p<0.01) methane (76% less) and also the total volatile fatty acids were reduced. A significantly higher (p<0.01) concentration of ammonia nitrogen was obtained with the encapsulated nitrate treatment (44%) compared to the free form (28%) and matrix only (20%) (p = 0.014). This might suggest slow release of encapsulated nitrate so that it is fully reduced to ammonia. Thus, this pioneering study found a significant reduction in methane production following the use of sesame gum encapsulated nitrate that shows the potential of a controlled release system in enhancing sustainability of ruminant production while reducing/eliminating the risk of nitrite toxicity

    Optimization of Chinese Chive Juice as a Functional Feed Additive

    No full text
    Allium tuberosum, commonly known as the Chinese chive (CC) is often used as a traditional medicine in East Asia for its health benefits. To explore the potential of CC as a functional feed additive, antibacterial and antioxidant assays, untargeted metabolomics, and a 2 &times; 3 &times; 3 fractional factorial design (FFD) were conducted. In the present study, CC displayed stable DPPH radical scavenging activity with constant total phenolic content, however, the total flavonoid contents and the antibacterial activities were attenuated following heat treatment. The FFD results identified the solid content (SBM) as the main determinant of the antibacterial activity and moisture content of the CC products along with two other factors: drying time and temperature. Two CC products manufactured with 30% (w/v) SBM with 3 h drying at 80 &deg;C and 20% (w/v) SBM with 8 h drying at 60 &deg;C obtained the maximum antibacterial activity and least moisture content (&lt;5%). Liquid chromatography-tandem mass spectrometry based multivariate analysis revealed 14 changed compounds in the non-heated and heated CC including flavonols, sinapinic acid, and lysophospholipids, which might affect the functionality. In conclusion, we propose an empirical approach to the pre-processing of CC juice that is suitable for blending in feed and simultaneously retaining its bioactivities

    Modulatory effect of linoleic and oleic acid on cell proliferation and lipid metabolism gene expressions in primary bovine satellite cells

    No full text
    This study was performed to elucidate the effects of linoleic acid (LA), oleic acid (OA) and their combination (LA + OA) on cell proliferation, apoptosis, necrosis, and the lipid metabolism related gene expression in bovine satellite cells (BSCs), isolated from bovine muscles. Cell viability was significantly increased with the OA and LA treatment. Furthermore, LA + OA enhanced cell proliferation in a dose-dependent manner (10 to 100 µM), whereas it lowered at 250 µM. In addition, a cell-cycle analysis showed that 100 µM of LA and OA markedly decreased the G0/G1 phase proportion (62.58% and 61.33%, respectively), compared to controls (68.02%), whereas the S-phase cells’ proportion was increased. The ratio of G2/M phase cells was not significantly different among the groups. Moreover, analyses with AO/EtBr staining showed that no apoptosis occurred. Necrosis were determined by flow cytometry using Annexin V-FITC/PI staining which revealed no early apoptosis in the cells pretreated with LA or OA, but occurred in the LA + OA group. We also analyzed the mRNA expression of lipid metabolizing genes such as peroxisome proliferator receptor alfa (PPARα), peroxisome proliferator receptor gamma (PPARγ), acyl-CoA oxidase (ACOX), lipoprotein lipase (LPL), carnitine palmitoyl transferase (CPT-1), and fatty-acid binding protein4 (FABP4), which were upregulated in LA or OA treated cells compared to the control group. In essence, LA and OA alone promote the cell proliferation without any apoptosis and necrosis, which might upregulate the lipid metabolism related gene expressions, and increase fatty-acid oxidation in the BSCs’ lipid metabolism

    The Effect of Probiotics on Intestinal Tight Junction Protein Expression in Animal  Models: A Meta-Analysis

    No full text
    This study investigates the effect of probiotics supplementation on tight junction protein (TJP) expression in animal models by meta-analysis. We estimated the effect of probiotics administration in an animal inflammatory bowel disease model based on 47 collected articles from the databases, including Sciencedirect, Pubmed, Scopus, and Google Scholar. The effect size was analyzed with the standardized mean difference, and the heterogeneity of the effect sizes was assessed using Cochran’s Q test. To explain the heterogeneity, moderate analyses, such as meta-ANOVA and meta-regression, were performed using the mixed effects model. Finally, publication bias was assessed using Egger’s linear regression test. Among the evaluated items, zonula occluden (ZO)-1 showed the highest Q statistics value, and the effect sizes of all items were positive with high significance (p I2 value of all items reflected high heterogeneity (in excess of 80%). From the results of the meta-ANOVA, the factors of the heterogeneity found in the probiotics strains were investigated. Lactobacillus reuteri was identified as having the greatest effect on claudin and ZO-1 expression. The publication bias was detected by the Egger’s linear regression test, though it revealed that the occludin and ZO-1 had larger sample sizes than the claudin. In sum, this meta-analysis reveals that probiotics are effective at improving TJP expression in a gut environment of inflammatory bowel disease (IBD)-induced animal model. Our findings will interest IBD patients, as they suggest an area warranting future study

    Effect of Lactic Acid Bacteria on the Nutritive Value and In Vitro Ruminal Digestibility of Maize and Rice Straw Silage

    No full text
    A study was conducted to determine the effects of lactic acid bacteria (LAB) on nutritive value and in vitro rumen digestibility of maize and rice straw silages. Two identical experiments were carried out for each of the two silages. A total of five treatments were used for each experiment: (1) negative control (NC); (2) positive control (PC); (3) Lactobacillus plantarum (LPL); (4) L. paracasei (LPA); and (5) L. acidophilus (LA). Each treatment was then divided into four ensiling periods: 3, 7, 20, and 40 days with three replications. The LPL treatment had significantly higher dry matter (DM), lower ammonia-N, and a lower number of fungi on maize silage after 40 days (p &lt; 0.05). On the other hand, the LA treatment increased DM and CP content, reduced NDF and ADF contents compared to NC, and also produced more lactic acid compared to the other LAB-treated rice straw silages. Results of the in vitro rumen fermentation of maize silages showed no significant differences in DMD after LAB inoculation. However, higher DMD and ruminal ammonia-N were shown by rice straw ensiled with L. acidophilus. In conclusion, silage additives, which could improve the ensiling process of maize and rice straw, appeared to be different and substrate specific

    The Influence of Feed Energy Density and a Formulated Additive on Rumen and Rectal Temperature in Hanwoo Steers

    No full text
    The present study investigated the optimum blending condition of protected fat, choline and yeast culture for lowering of rumen temperature. The Box Benken experimental design, a fractional factorial arrangement, and response surface methodology were employed. The optimum blending condition was determined using the rumen simulated in vitro fermentation. An additive formulated on the optimum condition contained 50% of protected fat, 25% of yeast culture, 5% of choline, 7% of organic zinc, 6.5% of cinnamon, and 6.5% of stevioside. The feed additive was supplemented at a rate of 0.1% of diet (orchard grass:concentrate, 3:7) and compared with a control which had no additive. The treatment resulted in lower volatile fatty acid (VFA) concentration and biogas than the control. To investigate the effect of the optimized additive and feed energy levels on rumen and rectal temperatures, four rumen cannulated Hanwoo (Korean native beef breed) steers were in a 4×4 Latin square design. Energy levels were varied to low and high by altering the ratio of forage to concentrate in diet: low energy (6:4) and high energy (4:6). The additive was added at a rate of 0.1% of the diet. The following parameters were measured; feed intake, rumen and rectal temperatures, ruminal pH and VFA concentration. This study was conducted in an environmentally controlled house with temperature set at 30°C and relative humidity levels of 70%. Steers were housed individually in raised crates to facilitate collection of urine and feces. The adaptation period was for 14 days, 2 days for sampling and 7 days for resting the animals. The additive significantly reduced both rumen (p<0.01) and rectal temperatures (p<0.001) without depressed feed intake. There were interactions (p<0.01) between energy level and additive on ruminal temperature. Neither additive nor energy level had an effect on total VFA concentration. The additive however, significantly increased (p<0.01) propionate and subsequently had lower acetate:propionate (A/P) ratios than non-additive supplementation. High concentrate diets had significantly lower pH. Interactions between energy and additive were observed (p<0.01) in ammonia nitrogen production. Supplementation of diets with the additive resulted in lower rumen and rectal temperatures, hence the additive showed promise in alleviating undesirable effects of heat stress in cattle
    corecore