26 research outputs found
Original data for the graphs in Figs 4 and S7 and S8.
Each tab includes data for individual panels of Figs 4 and S7 and S8. (XLSX)</p
Expression of <i>Girk</i> mRNA by arcuate AgRP neurons.
Related to Fig 2. (A) Graph demonstrates percentage of Agrp (+) neurons that express mRNA of Girk1 and/or Girk2. Girk1 (green): Girk1-containing Agrp (+) neurons; Girk2 (magenta): Girk2-containing Agrp (+) neurons; Girk1 and Girk2 (gray): Agrp (+) neurons containing both Girk1 and Girk2. n = 3. (B) Graph demonstrates percentage of Agrp (+) neurons that express mRNA of Girk1 and/or Girk3. Girk1 (green): Girk1-containing Agrp (+) neurons; Girk3 (cyan): Girk3-containing Agrp (+) neurons; Girk1 and Girk3 (gray): Agrp (+) neurons containing both Girk1 and Girk3. n = 3. (C) Graph demonstrates percentage of Agrp (+) neurons that express mRNA of Girk1 and/or Girk4. Girk1 (green): Girk1-containing Agrp (+) neurons; Girk4 (orange): Girk4-containing Agrp (+) neurons; Girk1 and Girk4 (gray): Agrp (+) neurons containing both Girk1 and Girk4. n = 3. (D) Graph demonstrates percentage of Agrp (+) neurons that express mRNA of Girk2 and/or Girk3. Girk2 (magenta): Girk2-containing Agrp (+) neurons; Girk3 (cyan): Girk3-containing Agrp (+) neurons; and Girk2 and Girk3 (gray): Agrp (+) neurons containing both Girk2 and Girk3. n = 3. Data are presented as mean ± SEM. Twelve hypothalamic slices from each mouse (from bregma −1.58 mm to −2.02 mm) were included for analyses. See text for specific values. The numerical data for S3A–S3D Fig can be found in S2 Data. (TIF)</p
Role of GIRK2-containing GIRK channels in GABA<sub>B</sub>-activated K<sup>+</sup> current recorded from NPY neurons.
Related to Fig 3. (A) Image demonstrates outward currents by local application of 100 μm baclofen. Voltage ramp pulses (from −120 mV to −10 mV, 100 mV/s) were applied as indicated by arrows, a and b, to obtain current responses, Ia and Ib. (B) Image demonstrates current–voltage (I-V) relationship of baclofen-activated currents (IBac); IBac was calculated by subtracting current responses (Ib- Ia) obtained in (A). (C) Rectification index was calculated by obtaining the ratio of amplitudes at −120 mV (I-120 mV) and −60 mV (I-60 mV) in 12 NPY neurons. (D, E) Images demonstrate IBac recorded from NPYG2WT (black) and NPYG2KO (red) neurons using 10 μm (D) or 100 μm (E) baclofen. (F, G) Image summarizes normalized amplitudes of IBac recorded from NPYG2WT (black) and NPYG2KO (red) neurons using 10 μm baclofen (1.4 ± 0.1 pA/pF, n = 32, for NPYG2WT and 1.4 ± 0.1 pA/pF, n = 23, for NPYG2KO, df = 53, t = 0.276, p = 0.783) (F) and 100 μm baclofen (1.8 ± 0.1 pA/pF, n = 53, for NPYG2WT and 1.8 ± 0.2 pA/pF, n = 26, for NPYG2KO, df = 77, t = 0.021, and p = 0.984) (G). Data are presented as mean ± SEM. Unpaired t test was used for statistical analyses. ns = not significant. The numerical data for S4C, S4F, and S4G Fig can be found in S3 Data. (TIF)</p
Deletion of GIRK2, but not GIRK1, leads to increased Fos expression by the arcuate AgRP neurons.
(A) Images demonstrate Fos IHC results from AgrptdTomato, AgrptdTomato/Girk1KO, and AgrptdTomato/Girk2KO mice, as indicated. 3V = third ventricle. Scale bar = 50 μm. (B) Bar graphs and dots summarize proportion of Fos-expressing AgRP neurons in AgrptdTomato (56.0 ± 3.2%, n = 6, black), AgrptdTomato/Girk1KO (64.6 ± 2.6%, n = 4, gray), and AgrptdTomato/Girk2KO (71.7 ± 4.8%, n = 4, red). Twelve hypothalamic slices from each mouse (from bregma −1.46 mm to −2.06 mm) were included for analyses. Data are presented as mean ± SEM. Ordinary one-way ANOVA with Bonferroni correction was used for statistical analyses (df = 2, F2, 11 = 4.961, p = 0.029). *p S4 Data. AgRP, agouti-related peptide; GIRK, G protein-gated inwardly rectifying K+; IHC, immunohistochemistry.</p
Effects of K<sup>+</sup> channel blockers on RMP of NPY neurons.
Related to Fig 1. (A) Trace demonstrates depolarizing effects of linopirdine and XE991, M channels blockers. (B) Trace demonstrates no effects of PK-THPP, a TASK-3 channel blocker. (C) Trace demonstrates no effects of spadin, a TREK-1 channel blocker. (D) Trace demonstrates no effects of tolbutamide, a KATP channel blocker. (E–H) Bar graphs and dots summarize effects on RMP change of linopirdine and XE991 (from −40.4 ± 0.7 mV to −39.5 ± 0.7 mV, n = 12, df = 11, t = 1.650, p = 0.127) (E), PK-THPP (from −42.5 ± 1.0 mV to −42.1 ± 0.8 mV, n = 12, df = 11, t = 0.890, p = 0.393) (F), spadin (from −41.9 ± 1.1 mV to −42.3 ± 1.0 mV, n = 13, df = 12, t = 1.866, p = 0.087) (G), and tolbutamide (from −42.2 ± 0.7 mV to −41.7 ± 0.8 mV, n = 13,df = 12, t = 1.879, and p = 0.085) (H). Red and black lines indicate changes of membrane potential in depolarized and nonresponsive neurons, respectively. Data are presented as mean ± SEM. Paired t test was used for statistical analyses. ns = not significant. The numerical data for S2E–S2H Fig can be found in S1 Data. (TIF)</p
Effects of CGP54626 on NPY<sup>G2WT</sup> neurons.
Related to Fig 3. (A) Image demonstrates no effects of CGP54626 on NPYG2WT neurons. Dotted line indicates RMP. (B) Lines and dots summarize effects of CGP54626 on RMP (from −42.9 ± 0.8 mV to −43.2 ± 0.8 mV, n = 12, df = 11, t = 2.191, p = 0.051). (C) Lines and dots summarize effect of CGP54626 on input resistance (from 2.68 ± 0.20 GΩ to 2.71 ± 0.21 GΩ, n = 12, df = 11, t = 0.519, p = 0.614). Paired t test was used for statistical analyses. ns = not significant. The numerical data for S6B and S6C Fig can be found in S3 Data. (TIF)</p
Summary of GABA<sub>B</sub>-induced hyperpolarization of arcuate NPY neurons.
Summary of GABAB-induced hyperpolarization of arcuate NPY neurons.</p
Original data for the graphs in Figs 7 and S10.
Each tab includes data for individual panels of Figs 7 and S10. (XLSX)</p
Original data for the graphs in Figs 2 and S3.
Each tab includes data for individual panels of Figs 2 and S3. (XLSX)</p
GIRK channels stabilize RMP of NPY neurons.
(A) Brightfield illumination (Brightfield), fluorescent (FITC) illumination (Npy-hrGFP), fluorescent (TRITC) illumination (Alexa Fluor 594), and merged (Merge) images of targeted NPY neuron. Arrows indicate the cell targeted for whole-cell patch clamp recording. (B) Image demonstrates a depolarizing effect of tertiapin-Q. Dotted line indicates RMP. (C) Voltage deflections in response to small hyperpolarizing current steps (from −25 pA to 0 pA by 5 pA increments) before (control, black) and after (tertiapin-Q, red) the perfusion with tertiapin-Q as indicated by arrows in (B). (D) The voltage–current (V-I) relationship demonstrates increased input resistance by tertiapin-Q. Erev = reversal potential. (E) Lines and dots summarize effects of tertiapin-Q on RMP (from −47.7 ± 3.0 mV to −44.9 ± 2.1 mV, n = 11, df = 10, t = 2.787, p = 0.019). Red and black lines indicate changes of membrane potential in depolarized and nonresponsive neurons, respectively. (F) Lines and dots summarize effect of tertiapin-Q on input resistance (from 2.75 ± 0.27 GΩ to 3.03 ± 0.30 GΩ, n = 11, df = 10, t = 4.370, p = 0.001). Red and black lines indicate changes of input resistance in depolarized and nonresponsive neurons, respectively. (G, H) Lines and dots summarize effects of 100 nM tertiapin-Q (G) (from −41.2 ± 0.8 mV to −40.0 ± 1.1 mV, n = 11, df = 10, t = 2.040, p = 0.069) and 500 nM tertiapin-Q (H) (from −42.9 ± 1.2 mV to −40.5 ± 1.1 mV, n = 13, df = 12, t = 3.292, p = 0.006) on RMP. Red and black lines indicate changes of membrane potential in depolarized and nonresponsive neurons, respectively. (I) Histogram summarizes responses (no effects or depolarization) of NPY neurons to different concentrations of tertiapin-Q. (J) Bar graphs and dots summarize effects of K+ channel blockers. Each neuron was tested with only 1 K+ channel blocker. Data are presented as mean ± SEM. Paired t test was used for statistical analyses. *p p S1 Data. GIRK, G protein-gated inwardly rectifying K+; NPY, neuropeptide Y; RMP, resting membrane potential.</p
