162 research outputs found
Holes or Empty Pseudo-Triangles in Planar Point Sets
Let denote the smallest integer such that any set of at least
points in the plane, no three on a line, contains either an empty
convex polygon with vertices or an empty pseudo-triangle with
vertices. The existence of for positive integers ,
is the consequence of a result proved by Valtr [Discrete and Computational
Geometry, Vol. 37, 565--576, 2007]. In this paper, following a series of new
results about the existence of empty pseudo-triangles in point sets with
triangular convex hulls, we determine the exact values of and , and prove bounds on and , for . By
dropping the emptiness condition, we define another related quantity , which is the smallest integer such that any set of at least points in the plane, no three on a line, contains a convex polygon with
vertices or a pseudo-triangle with vertices. Extending a result of
Bisztriczky and T\'oth [Discrete Geometry, Marcel Dekker, 49--58, 2003], we
obtain the exact values of and , and obtain non-trivial
bounds on .Comment: A minor error in the proof of Theorem 2 fixed. Typos corrected. 19
pages, 11 figure
Performance Studies of Bulk Micromegas of Different Design Parameters
The present work involves the comparison of various bulk Micromegas detectors
having different design parameters. Six detectors with amplification gaps of
and mesh hole pitch of were tested at room temperature and normal gas pressure. Two
setups were built to evaluate the effect of the variation of the amplification
gap and mesh hole pitch on different detector characteristics. The gain, energy
resolution and electron transmission of these Micromegas detectors were
measured in Argon-Isobutane (90:10) gas mixture while the measurements of the
ion backflow were carried out in P10 gas. These measured characteristics have
been compared in detail to the numerical simulations using the Garfield
framework that combines packages such as neBEM, Magboltz and Heed.Comment: arXiv admin note: text overlap with arXiv:1605.0289
The -Center Problem in Tree Networks Revisited
We present two improved algorithms for weighted discrete -center problem
for tree networks with vertices. One of our proposed algorithms runs in
time. For all values of , our algorithm
thus runs as fast as or faster than the most efficient time
algorithm obtained by applying Cole's speed-up technique [cole1987] to the
algorithm due to Megiddo and Tamir [megiddo1983], which has remained
unchallenged for nearly 30 years. Our other algorithm, which is more practical,
runs in time, and when it is
faster than Megiddo and Tamir's time algorithm
[megiddo1983]
Disjoint Empty Convex Pentagons in Planar Point Sets
In this paper we obtain the first non-trivial lower bound on the number of disjoint empty convex pentagons in planar points sets. We show that the number of disjoint empty convex pentagons in any set of n points in the plane, no three on a line, is at least ⌊5n/47⌋. This bound can be further improved to (3n−1)/28 for infinitely many n
On the Minimum Size of a Point Set Containing a 5-Hole and a Disjoint 4-Hole
Let H(k; l), k ≤ l denote the smallest integer such that any set of H(k; l) points in the plane, no three on a line, contains an empty convex k-gon and an empty convex l-gon, which are disjoint, that is, their convex hulls do not intersect. Hosono and Urabe [JCDCG, LNCS 3742, 117–122, 2004] proved that 12 ≤ H(4, 5) ≤ 14. Very recently, using a Ramseytype result for disjoint empty convex polygons proved by Aichholzer et al. [Graphs and Combinatorics, Vol. 23, 481–507, 2007], Hosono and Urabe [Kyoto CGGT, LNCS 4535, 90–100, 2008] improve the upper bound to 13. In this paper, with the help of the same Ramsey-type result, we prove that H(4; 5) = 12
- …