64 research outputs found

    A visualization framework for the analysis ofneuromuscularsimulations

    Get PDF
    We present a visualization framework for exploring and analyzing data sets from biomechanical and neuromuscular simulations. These data sets describe versatile information related to the different stages of a motion analysis. In studying these data using a 3D visualization approach, interactive exploring is important, especially for supporting spatial analysis. Moreover, as these data contain many various but related elements, numerical analysis of neuromuscular simulations is complicated. Visualization techniques enhance the analysis process, thus improving the effectiveness of the experiments. Our approach allows convenient definitions of relationships between numerical data sets and 3D objects. Scientific simulation data sets appropriate for this style of analysis are present everywhere motion analysis is performed and are predominant in many clinical works. In this paper, we outline the functionalities of the framework as well as applications embedded within the OpenSim simulation platform. These functionalities form an effective approach specifically designed for the investigation of neuromuscular simulations. This claim is supported by evaluation experiments where the framework was used to analyze gaits and crouch motion

    "Will You Find These Shortcuts?" A Protocol for Evaluating the Faithfulness of Input Salience Methods for Text Classification

    Full text link
    Feature attribution a.k.a. input salience methods which assign an importance score to a feature are abundant but may produce surprisingly different results for the same model on the same input. While differences are expected if disparate definitions of importance are assumed, most methods claim to provide faithful attributions and point at the features most relevant for a model's prediction. Existing work on faithfulness evaluation is not conclusive and does not provide a clear answer as to how different methods are to be compared. Focusing on text classification and the model debugging scenario, our main contribution is a protocol for faithfulness evaluation that makes use of partially synthetic data to obtain ground truth for feature importance ranking. Following the protocol, we do an in-depth analysis of four standard salience method classes on a range of datasets and shortcuts for BERT and LSTM models and demonstrate that some of the most popular method configurations provide poor results even for simplest shortcuts. We recommend following the protocol for each new task and model combination to find the best method for identifying shortcuts

    A subject-specific software solution for the modeling and thevisualization of muscles deformations

    Get PDF
    Today, to create and to simulate a virtual anatomical version of a subject is useful in the decision process of surgical treatments. The muscular activity is one of the factors which can contribute to abnormal movements such as in spasticity or static contracture. In this paper, we propose a numerical solution, based on the Finite Element (FE) method, able to estimate muscles deformations during contraction. Organized around a finite element solver and a volumetric environment, this solution is made of all the modeling and simulation processes from the discretization of the studied domain to the visualization of the results. The choices of materials and properties of the FE model are also presented such as the hyperelasticity, the contention model based on inter-meshes neighboring nodes pairing, and the estimation of nodal forces based on the subject-specific muscular forces and action line

    A visualization framework for the analysis of neuromuscular simulations

    Get PDF
    We present a visualization framework for exploring and analyzing data sets from biomechanical and neuromuscular simulations. These data sets describe versatile information related to the different stages of a motion analysis. In studying these data using a 3D visualization approach, interactive exploring is important, especially for supporting spatial analysis. Moreover, as these data contain many various but related elements, numerical analysis of neuromuscular simulations is complicated. Visualization techniques enhance the analysis process, thus improving the effectiveness of the experiments. Our approach allows convenient definitions of relationships between numerical data sets and 3D objects. Scientific simulation data sets appropriate for this style of analysis are present everywhere motion analysis is performed and are predominant in many clinical works. In this paper, we outline the functionalities of the framework as well as applications embedded within the OpenSim simulation platform. These functionalities form an effective approach specifically designed for the investigation of neuromuscular simulations. This claim is supported by evaluation experiments where the framework was used to analyze gaits and crouch motions

    Rewarding Coreference Resolvers for Being Consistent with World Knowledge

    Get PDF
    Unresolved coreference is a bottleneck for relation extraction, and high-quality coreference resolvers may produce an output that makes it a lot easier to extract knowledge triples. We show how to improve coreference resolvers by forwarding their input to a relation extraction system and reward the resolvers for producing triples that are found in knowledge bases. Since relation extraction systems can rely on different forms of supervision and be biased in different ways, we obtain the best performance, improving over the state of the art, using multi-task reinforcement learning.Comment: To appear in EMNLP 2019 (with corrected Fig. 2

    Evaluation of a geometry-based knee joint compared toaplanarknee joint

    Get PDF
    Today neuromuscular simulations are used in several fields, such as diagnostics and planing of surgery, to get a deeper understanding of the musculoskeletal system. During the last year, new models and datasets have been presented which can provide us with more in-depth simulations and results. The same kind of development has occurred in the field of studying the human knee joint using complex three dimensional finite element models and simulations. In the field of musculoskeletal simulations, no such knee joints can be used. Instead the most common knee joint description is an idealized knee joint with limited accuracy or a planar knee joint which only describes the knee motion in a plane. In this paper, a new knee joint based on both equations and geometry is introduced and compared to a common clinical planar knee joint. The two kinematical models are analyzed using a gait motion, and are evaluated using the muscle activation and joint reaction forces which are compared to in-vivo measured forces. We show that we are able to predict the lateral, anterior and longitudinal moments, and that we are able to predict better knee and hip joint reaction force

    Musculoskeletal simulation model generation from MRI datasets and motion capture data

    Get PDF
    International audienceToday computer models and computer simulations of the musculoskeletal system are widely used to study the mechanisms behind human gait and its disorders. The common way of creating musculoskeletal models is to use a generic musculoskeletal model based on data derived from anatomical and biomechanical studies of cadaverous specimens. To adapt this generic model to a specific subject, the usual approach is to scale it. This scaling has been reported to introduce several errors because it does not always account for subject-specific anatomical differences. As a result, a novel semi-automatic workflow is proposed that creates subject-specific musculoskeletal models from Magnetic Resonance Imaging (MRI) datasets and motion capture data. Based on subject-specific medical data and a model-based automatic segmentation approach, an accurate modeling of the anatomy can be produced while avoiding the scaling operation. This anatomical model coupled with motion capture data, joint kinematics information and muscle-tendons actuators is finally used to create a subject-specific musculoskeletal model

    Exploring thienothiadiazine dioxides as isosteric analogues of benzo-and pyridothiadiazine dioxides in the search of new AMPA and kainate receptor positive allosteric modulators

    Full text link
    peer reviewedThe synthesis and biological evaluation on AMPA and kainate receptors of new examples of 3,4-dihydro-2H-1,2,4-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxides is described. The introduction of a cyclopropyl chain instead of an ethyl chain at the 4-position of the thiadiazine ring was found to dramatically improve the potentiator activity on AMPA receptors, with compound 32 (BPAM395) expressing in vitro activity on AMPARs (EC2x = 0.24 ÎĽM) close to that of the reference 4-cyclopropyl-substituted benzothiadiazine dioxide 10 (BPAM344). Interestingly, the 4-allyl-substituted thienothiadiazine dioxide 27 (BPAM307) emerged as the most promising compound on kainate receptors being a more effective potentiator than the 4-cyclopropyl-substituted thienothiadiazine dioxide 32 and supporting the view that the 4-allyl substitution of the thiadiazine ring could be more favorable than the 4-cyclopropyl substitution to induce marked activity on kainate receptors versus AMPA receptors. The thieno-analogue 36 (BPAM279) of the clinically tested S18986 (11) was selected for in vivo evaluation in mice as a cognitive enhancer due to a safer profile than 32 after massive per os drug administration. Compound 36 was found to increase the cognition performance in mice at low doses (1 mg/kg) per os suggesting that the compound was well absorbed after oral administration and able to reach the central nervous system. Finally, compound 32 was selected for co-crystallization with the GluA2-LBD (L504Y,N775S) and glutamate to examine the binding mode of thienothiadiazine dioxides within the allosteric binding site of the AMPA receptor. At the allosteric site, this compound established similar interactions as the previously reported BTD-type AMPA receptor modulators
    • …
    corecore