2,107 research outputs found
Piano Genie
We present Piano Genie, an intelligent controller which allows non-musicians
to improvise on the piano. With Piano Genie, a user performs on a simple
interface with eight buttons, and their performance is decoded into the space
of plausible piano music in real time. To learn a suitable mapping procedure
for this problem, we train recurrent neural network autoencoders with discrete
bottlenecks: an encoder learns an appropriate sequence of buttons corresponding
to a piano piece, and a decoder learns to map this sequence back to the
original piece. During performance, we substitute a user's input for the
encoder output, and play the decoder's prediction each time the user presses a
button. To improve the intuitiveness of Piano Genie's performance behavior, we
impose musically meaningful constraints over the encoder's outputs.Comment: Published as a conference paper at ACM IUI 201
Recommended from our members
The Amino-Acid Mutational Spectrum of Human Genetic Disease
Background: Nonsynonymous mutations in the coding regions of human genes are responsible
for phenotypic differences between humans and for susceptibility to genetic disease.
Computational methods were recently used to predict deleterious effects of nonsynonymous
human mutations and polymorphisms. Here we focus on understanding the amino-acid mutation
spectrum of human genetic disease. We compare the disease spectrum to the spectra of mutual
amino-acid mutation frequencies, non-disease polymorphisms in human genes, and substitutions
fixed between species.
Results: We find that the disease spectrum correlates well with the amino-acid mutation
frequencies based on the genetic code. Normalized by the mutation frequencies, the spectrum can
be rationalized in terms of chemical similarities between amino acids. The disease spectrum is
almost identical for membrane and non-membrane proteins. Mutations at arginine and glycine
residues are together responsible for about 30% of genetic diseases, whereas random mutations at
tryptophan and cysteine have the highest probability of causing disease.
Conclusions: The overall disease spectrum mainly reflects the mutability of the genetic code. We
corroborate earlier results that the probability of a nonsynonymous mutation causing a genetic
disease increases monotonically with an increase in the degree of evolutionary conservation of the
mutation site and a decrease in the solvent-accessibility of the site; opposite trends are observed
for non-disease polymorphisms. We estimate that the rate of nonsynonymous mutations with a
negative impact on human health is less than one per diploid genome per generation
Étude et analyse de la mégatendance ‘pénurie croissante d'importantes matières premières’ et l'impact de cette tendance sur la réalisation des Objectifs de Développement Durable (ODDs) : synthèse
Onderzoek en analyse van de megatrend ‘toenemende schaarste van belangrijke grondstoffen’ en de impact van deze trend op het behalen van de Sustainable Development Goals (SDGs). Samenvatting.
Recommended from our members
Target MRNA Abundance Dilutes MicroRNA and SiRNA Activity
Post-transcriptional regulation by microRNAs and siRNAs depends not only on characteristics of individual binding sites in target mRNA molecules, but also on system-level properties such as overall molecular concentrations. We hypothesize that an intracellular pool of microRNAs/siRNAs faced with a larger number of available predicted target transcripts will downregulate each individual target gene to a lesser extent. To test this hypothesis, we analyzed mRNA expression change from 178 microRNA and siRNA transfection experiments in two cell lines. We find that downregulation of particular genes mediated by microRNAs and siRNAs indeed varies with the total concentration of available target transcripts. We conclude that to interpret and design experiments involving gene regulation by small RNAs, global properties, such as target mRNA abundance, need to be considered in addition to local determinants. We propose that analysis of microRNA/siRNA targeting would benefit from a more quantitative definition, rather than simple categorization of genes as ‘target’ or ‘not a target.’ Our results are important for understanding microRNA regulation and may also have implications for siRNA design and small RNA therapeutics
- …