10,936 research outputs found
Eddington limited starbursts in the central 10pc of AGN, and the Torus in NGC1068
We present results from a survey of nearby AGN using the near infrared
adaptive optics integral field spectrograph SINFONI. These data enable us to
probe the distribution and kinematics of the gas and stars at spatial
resolutions as small as 0.085arcsec. We find strong evidence for recent but
short lived starbursts residing in very dense nuclear disks. On scales of less
than 10pc these would have reached Eddington-limited luminosities when active,
perhaps accounting for their short duration. In addition, for NGC1068 at a
resolution of 6pc, we present direct observations of molecular gas close around
the AGN which we identify with the obscuring torus.Comment: Conference proceedings to appear in "The Central Engine of Active
Galactic Nuclei", ed. L. C. Ho and J.-M. Wang (San Francisco: ASP
[The Impact of Nuclear Star Formation on Gas Inflow to AGN
Our adaptive optics observations of nearby AGN at spatial resolutions as
small as 0.085arcsec show strong evidence for recent, but no longer active,
nuclear star formation. We begin by describing observations that highlight two
contrasting methods by which gas can flow into the central tens of parsecs. Gas
accumulation in this region will inevitably lead to a starburst, and we discuss
the evidence for such events. We then turn to the impact of stellar evolution
on the further inflow of gas by combining a phenomenological approach with
analytical modelling and hydrodynamic simulations. These complementary
perspectives paint a picture in which all the processes are ultimately
regulated by the mass accretion rate into the central hundred parsecs, and the
ensuing starburst that occurs there. The resulting supernovae delay accretion
by generating a starburst wind, which leaves behind a clumpy interstellar
medium. This provides an ideal environment for slower stellar outflows to
accrete inwards and form a dense turbulent disk on scales of a few parsecs.
Such a scenario may resolve the discrepancy between the larger scale structure
seen with adaptive optics and the small scale structure seen with VLTI.Comment: to appear in: Co-Evolution of Central Black Holes and Galaxies; 7
page
Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy
Background: Progressive multifocal leukoencephalopathy (PML) was reported to have developed in three patients treated with natalizumab. We conducted an evaluation to determine whether PML had developed in any other treated patients.
Methods: We invited patients who had participated in clinical trials in which they received recent or long-term treatment with natalizumab for multiple sclerosis, Crohn's disease, or rheumatoid arthritis to participate. The clinical history, physical examination, brain magnetic resonance imaging (MRI), and testing of cerebrospinal fluid for JC virus DNA were used by an expert panel to evaluate patients for PML. We estimated the risk of PML in patients who completed at least a clinical examination for PML or had an MRI.
Results: Of 3417 patients who had recently received natalizumab while participating in clinical trials, 3116 (91 percent) who were exposed to a mean of 17.9 monthly doses underwent evaluation for PML. Of these, 44 patients were referred to the expert panel because of clinical findings of possible PML, abnormalities on MRI, or a high plasma viral load of JC virus. No patient had detectable JC virus DNA in the cerebrospinal fluid. PML was ruled out in 43 of the 44 patients, but it could not be ruled out in one patient who had multiple sclerosis and progression of neurologic disease because data on cerebrospinal fluid testing and follow-up MRI were not available. Only the three previously reported cases of PML were confirmed (1.0 per 1000 treated patients; 95 percent confidence interval, 0.2 to 2.8 per 1000).
Conclusions: A detailed review of possible cases of PML in patients exposed to natalizumab found no new cases and suggested a risk of PML of roughly 1 in 1000 patients treated with natalizumab for a mean of 17.9 months. The risk associated with longer treatment is not known
A Close Look at Star Formation around Active Galactic Nuclei
We analyse star formation in the nuclei of 9 Seyfert galaxies at spatial
resolutions down to 0.085arcsec, corresponding to length scales of less than
10pc in some objects. Our data were taken mostly with the near infrared
adaptive optics integral field spectrograph SINFONI. The stellar light profiles
typically have size scales of a few tens of parsecs. In two cases there is
unambiguous kinematic evidence for stellar disks on these scales. In the
nuclear regions there appear to have been recent - but no longer active -
starbursts in the last 10-300Myr. The stellar luminosity is less than a few
percent of the AGN in the central 10pc, whereas on kiloparsec scales the
luminosities are comparable. The surface stellar luminosity density follows a
similar trend in all the objects, increasing steadily at smaller radii up to
10^{13}L_sun/kpc^2 in the central few parsecs, where the mass surface density
exceeds 10^4M_sun/pc^2. The intense starbursts were probably Eddington limited
and hence inevitably short-lived, implying that the starbursts occur in
multiple short bursts. The data hint at a delay of 50--100Myr between the onset
of star formation and subsequent fuelling of the black hole. We discuss whether
this may be a consequence of the role that stellar ejecta could play in
fuelling the black hole. While a significant mass is ejected by OB winds and
supernovae, their high velocity means that very little of it can be accreted.
On the other hand winds from AGB stars ultimately dominate the total mass loss,
and they can also be accreted very efficiently because of their slow speeds.Comment: 51 pages, including 27 figures; accepted by ApJ (paper reorganised,
but results & conclusions the same
Indications and practical approach to non-invasive ventilation in acute heart failure
In acute heart failure (AHF) syndromes significant respiratory failure (RF) is essentially seen in patients with acute cardiogenic pulmonary oedema (ACPE) or cardiogenic shock (CS). Non-invasive ventilation (NIV), the application of positive intrathoracic pressure through an interface, has shown to be useful in the treatment of moderate to severe RF in several scenarios. There are two main modalities of NIV: continuous positive airway pressure (CPAP) and pressure support ventilation (NIPSV) with positive end expiratory pressure. Appropriate equipment and experience is needed for NIPSV, whereas CPAP may be administered without a ventilator, not requiring special training. Both modalities have shown to be effective in ACPE, by a reduction of respiratory distress and the endotracheal intubation rate compared to conventional oxygen therapy, but the impact on mortality is less conclusive. Non-invasive ventilation is also indicated in patients with AHF associated to pulmonary disease and may be considered, after haemodynamic stabilization, in some patients with CS. There are no differences in the outcomes in the studies comparing both techniques, but CPAP is a simpler technique that may be preferred in low-equipped areas like the pre-hospital setting, while NIPSV may be preferable in patients with significant hypercapnia. The new modality 'high-flow nasal cannula' seems promising in cases of AHF with less severe RF. The correct selection of patients and interfaces, early application of the technique, the achievement of a good synchrony between patients and the ventilator avoiding excessive leakage, close monitoring, proactive management, and in some cases mild sedation, may warrant the success of the technique
Prohormones in the early diagnosis of cardiac syncope
Background--The early detection of cardiac syncope is challenging. We aimed to evaluate the diagnostic value of 4 novel prohormones, quantifying different neurohumoral pathways, possibly involved in the pathophysiological features of cardiac syncope: midregional-pro-A-type natriuretic peptide (MRproANP), C-terminal proendothelin 1, copeptin, and midregionalproadrenomedullin. Methods and Results--We prospectively enrolled unselected patients presenting with syncope to the emergency department (ED) in a diagnostic multicenter study. ED probability of cardiac syncope was quantified by the treating ED physician using a visual analogue scale. Prohormones were measured in a blinded manner. Two independent cardiologists adjudicated the final diagnosis on the basis of all clinical information, including 1-year follow-up. Among 689 patients, cardiac syncope was the adjudicated final diagnosis in 125 (18%). Plasma concentrations of MRproANP, C-terminal proendothelin 1, copeptin, and midregional-proadrenomedullin were all significantly higher in patients with cardiac syncope compared with patients with other causes (P < 0.001). The diagnostic accuracies for cardiac syncope, as quantified by the area under the curve, were 0.80 (95% confidence interval [CI], 0.76-0.84), 0.69 (95% CI, 0.64-0.74), 0.58 (95% CI, 0.52-0.63), and 0.68 (95% CI, 0.63-0.73), respectively. In conjunction with the ED probability (0.86; 95% CI, 0.82-0.90), MRproANP, but not the other prohormone, improved the area under the curve to 0.90 (95% CI, 0.87-0.93), which was significantly higher than for the ED probability alone (P=0.003). An algorithm to rule out cardiac syncope combining an MRproANP level of < 77 pmol/L and an ED probability of < 20% had a sensitivity and a negative predictive value of 99%. Conclusions--The use of MRproANP significantly improves the early detection of cardiac syncope among unselected patients presenting to the ED with syncope
Electrically Tunable Excitonic Light Emitting Diodes based on Monolayer WSe2 p-n Junctions
Light-emitting diodes are of importance for lighting, displays, optical
interconnects, logic and sensors. Hence the development of new systems that
allow improvements in their efficiency, spectral properties, compactness and
integrability could have significant ramifications. Monolayer transition metal
dichalcogenides have recently emerged as interesting candidates for
optoelectronic applications due to their unique optical properties.
Electroluminescence has already been observed from monolayer MoS2 devices.
However, the electroluminescence efficiency was low and the linewidth broad due
both to the poor optical quality of MoS2 and to ineffective contacts. Here, we
report electroluminescence from lateral p-n junctions in monolayer WSe2 induced
electrostatically using a thin boron nitride support as a dielectric layer with
multiple metal gates beneath. This structure allows effective injection of
electrons and holes, and combined with the high optical quality of WSe2 it
yields bright electroluminescence with 1000 times smaller injection current and
10 times smaller linewidth than in MoS2. Furthermore, by increasing the
injection bias we can tune the electroluminescence between regimes of
impurity-bound, charged, and neutral excitons. This system has the required
ingredients for new kinds of optoelectronic devices such as spin- and
valley-polarized light-emitting diodes, on-chip lasers, and two-dimensional
electro-optic modulators.Comment: 13 pages main text with 4 figures + 4 pages upplemental material
Treatment of distal humeral fractures using conventional implants. Biomechanical evaluation of a new implant configuration
<p>Abstract</p> <p>Background</p> <p>In the face of costly fixation hardware with varying performance for treatment of distal humeral fractures, a novel technique (U-Frame) is proposed using conventional implants in a 180° plate arrangement. In this in-vitro study the biomechanical stability of this method was compared with the established technique which utilizes angular stable locking compression plates (LCP) in a 90° configuration.</p> <p>Methods</p> <p>An unstable distal 3-part fracture (AO 13-C2.3) was created in eight pairs of human cadaveric humeri. All bone pairs were operated with either the "Frame" technique, where two parallel plates are distally interconnected, or with the LCP technique. The specimens were cyclically loaded in simulated flexion and extension of the arm until failure of the construct occurred. Motion of all fragments was tracked by means of optical motion capturing. Construct stiffness and cycles to failure were identified for all specimens.</p> <p>Results</p> <p>Compared to the LCP constructs, the "Frame" technique revealed significant higher construct stiffness in extension of the arm (P = 0.01). The stiffness in flexion was not significantly different (P = 0.16). Number of cycles to failure was found significantly larger for the "Frame" technique (P = 0.01).</p> <p>Conclusions</p> <p>In an in-vitro context the proposed method offers enhanced biomechanical stability and at the same time significantly reduces implant costs.</p
The Star-Forming Torus and Stellar Dynamical Black Hole Mass in the Seyfert 1 Nucleus of NGC3227
We report R~4300 VLT SINFONI adaptive optics integral field K-band
spectroscopy of the nucleus of the Seyfert 1 galaxy NGC3227 at a spatial
resolution of 0.085" (7pc). We present the morphologies and kinematics of
emission lines and absorption features, and give the first derivation of a
black hole mass in a Seyfert 1 nucleus from spatially resolved stellar
dynamics. We show that the gas in the nucleus has a mean column density of
order 10^{24}-10^{25}cm^{-2} and that it is geometrically thick, in agreement
with the standard `molecular torus' scenario. We discuss which heating
processes may be responsible for maintaining the vertical height of the torus.
We have also resolved the nuclear stellar distribution, and find that within a
few parsecs of the AGN there has been an intense starburst, the most recent
episode of which began ~40Myr ago but has now ceased. The current luminosity of
stars within 30pc of the AGN, ~3x10^9L_sun, is comparable to that of the AGN.
Based on a comparison of the respective size scales, we argue that the star
formation has been occuring in the obscuring torus. Finally, we present the
first derivation of a black hole mass in a Seyfert 1 nucleus from stellar
dynamics which marginally spatially resolve the black hole's sphere of
influence. We apply Schwarzschild orbit superposition models to our full
2-dimensional data and derive the mass of the black hole, paying careful
attention to the input parameters which are often uncertain: the contribution
of the large scale bulge and its mass-to-light ratio; the recent star formation
in the nucleus and its mass-to-light ratio; the contribution of the gas mass to
the potential; and the inclination. Our models yield a 1sigma range for the
black hole mass of M_{BH} = 7x10^6-2x10^7M_sun.Comment: Accepted by ApJ, 42 pages with 20 figure
- âŠ