188 research outputs found

    Deposition of Supercoiled DNA on Mica for Scanning Force Microscopy Imaging

    Get PDF
    The deposition of DNA molecules on mica is driven and controlled by the ionic densities around DNA and close to the surface of the substrate. Dramatic improvements in the efficiency and reproducibility of DNA depositions were due to the introduction of divalent cations in the deposition solutions. The ionic distributions on DNA and on mica determine the mobility of adsorbed DNA molecules, thus letting them assume thermodynamically equilibrated conformations, or alternatively trapping them in non-equilibrated conformations upon adsorption. With these prerequisites, mica does not seem like an inert substrate for DNA deposition for microscopy, and its properties greatly affect the efficiency of DNA deposition and the appearance of the molecules on the substrate. In our laboratory, we have some preliminary evidence that mica could also participate in DNA damage, most likely through its heavy metal impurities

    Conductivity in organic semiconductors hybridized with the vacuum field

    Full text link
    Organic semiconductors have generated considerable interest for their potential for creating inexpensive and flexible devices easily processed on a large scale [1-11]. However technological applications are currently limited by the low mobility of the charge carriers associated with the disorder in these materials [5-8]. Much effort over the past decades has therefore been focused on optimizing the organisation of the material or the devices to improve carrier mobility. Here we take a radically different path to solving this problem, namely by injecting carriers into states that are hybridized to the vacuum electromagnetic field. These are coherent states that can extend over as many as 10^5 molecules and should thereby favour conductivity in such materials. To test this idea, organic semiconductors were strongly coupled to the vacuum electromagnetic field on plasmonic structures to form polaritonic states with large Rabi splittings ca. 0.7 eV. Conductivity experiments show that indeed the current does increase by an order of magnitude at resonance in the coupled state, reflecting mostly a change in field-effect mobility as revealed when the structure is gated in a transistor configuration. A theoretical quantum model is presented that confirms the delocalization of the wave-functions of the hybridized states and the consequences on the conductivity. While this is a proof-of-principle study, in practice conductivity mediated by light-matter hybridized states is easy to implement and we therefore expect that it will be used to improve organic devices. More broadly our findings illustrate the potential of engineering the vacuum electromagnetic environment to modify and to improve properties of materials.Comment: 16 pages, 13 figure

    Evidence of Orientation-Dependent Early States of Prion Protein Misfolded Structures from Single Molecule Force Spectroscopy

    Get PDF
    Prion diseases are neurodegenerative disorders characterized by the presence of oligomers and amyloid fibrils. These are the result of protein aggregation processes of the cellular prion protein (PrPC) into amyloidal forms denoted as prions or PrPSc. We employed atomic force microscopy (AFM) for single molecule pulling (single molecule force spectroscopy, SMFS) experiments on the recombinant truncated murine prion protein (PrP) domain to characterize its conformations and potential initial oligomerization processes. Our AFM-SMFS results point to a complex scenario of structural heterogeneity of PrP at the monomeric and dimer level, like other amyloid proteins involved in similar pathologies. By applying this technique, we revealed that the PrP C-terminal domain unfolds in a two-state process. We used two dimeric constructs with different PrP reciprocal orientations: one construct with two sequential PrP in the N- to C-terminal orientation (N-C dimer) and a second one in the C- to C-terminal orientation (C-C dimer). The analysis revealed that the different behavior in terms of unfolding force, whereby the dimer placed C-C dimer unfolds at a higher force compared to the N-C orientation. We propose that the C-C dimer orientation may represent a building block of amyloid fibril formation

    Theory of mechanical unfolding of homopolymer globule: all-or-none transition in force-clamp mode vs phase coexistence in position-clamp mode

    Full text link
    Equilibrium mechanical unfolding of a globule formed by long flexible homopolymer chain collapsed in a poor solvent and subjected to an extensional force f (force-clamp mode) or extensional deformation D (position-clamp mode) is studied theoretically. Our analysis, like all previous analysis of this problem, shows that the globule behaves essentially differently in two modes of extension. In the force-clamp mode, mechanical unfolding of the globule with increasing applied force occurs without intramolecular microphase segregation, and at certain threshold value of the pulling force the globule unfolds as a whole ("all-or-none" transition). The value of the threshold force and the corresponding jump in the distance between the chain ends increase with a deterioration of the solvent quality and/or with an increase in the degree of polymerization. In the position-clamp mode, the globule unfolding occurs via intramolecular microphase coexistence of globular and extended microphases followed by an abrupt unraveling transition. Reaction force in the microphase segregation regime demonstrates an "anomalous" decrease with increasing extension. Comparison of deformation curves in force and position-clamp modes demonstrates that at weak and strong extensions the curves for two modes coincide, differences are observed in the intermediate extension range. Another unfolding scenario is typical for short globules: in both modes of extension they unfold continuously, without jumps or intramolecular microphase coexistence, by passing a sequence of uniformly elongated configurations.Comment: 19 pages, 13 figures, 1 tabl

    Reduced Graphene Oxide Electrolyte-Gated Transistor Immunosensor with Highly Selective Multiparametric Detection of Anti-Drug Antibodies

    Get PDF
    The advent of immunotherapies with biological drugs has revolutionized the treatment of cancers and auto-immune diseases. However, in some patients, the production of anti-drug antibodies (ADAs) hampers the drug efficacy. The concentration of ADAs is typically in the range of 1-10 pm; hence their immunodetection is challenging. ADAs toward Infliximab (IFX), a drug used to treat rheumatoid arthritis and other auto-immune diseases, are focussed. An ambipolar electrolyte-gated transistor (EGT) immunosensor is reported based on a reduced graphene oxide (rGO) channel and IFX bound to the gate electrode as the specific probe. The rGO-EGTs are easy to fabricate and exhibit low voltage operations (& LE; 0.3 V), a robust response within 15 min, and ultra-high sensitivity (10 am limit of detection). A multiparametric analysis of the whole rGO-EGT transfer curves based on the type-I generalized extreme value distribution is proposed. It is demonstrated that it allows to selectively quantify ADAs also in the co-presence of its antagonist tumor necrosis factor alpha (TNF-alpha), the natural circulating target of IFX

    Design, synthesis, chemical stability, packing, cyclic voltammetry, ionisation potential, and charge transport of [1]benzothieno[3,2-b][1]benzothiophene derivatives

    Get PDF
    Five new molecular semiconductors that differ from dioctylbenzothienobenzothiophene, by the introduction of ether or thioether side chains, have been synthesized and obtained in good yields. Their availability in sufficient quantities has allowed investigation of their electrochemical behaviour in solution and their electronic properties in solid state. Both ether and thioether compounds oxidise rather easily in solution, but nevertheless, they exhibit rather high ionisation potentials. This is a consequence of their crystal structure. Dioctylthioetherbenzothienobenzothiophene is rather sensitive to oxidation and degrades easily in close to ambient conditions. Dioctylletherbenzothienobenzothiophene is more stable. Its charge carrier mobility remains however rather moderate, on the order of 0.5 cm2/V.s, whereas that of dioctylbenzothienobenzothiophene reached 4 cm2/V.s, in the same conditions. The difference is explained by intrinsic factors as shown by a theoretical modelling

    Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors

    No full text
    This paper is concerned with an investigation of electron transfer between cytochrome P450scc (CYP11A1) immobilized on nanostructured rhodium\u2013graphite electrodes. Multi-walled carbon nanotubes (MWCNT) were deposited onto the rhodium\u2013graphite electrodes by drop casting. Cytochrome P450scc was deposited onto MWCNT-modified rhodium\u2013graphite electrodes. Cytochrome P450scc was also deposited onto both gold nanoparticle-modified and bare rhodium\u2013graphite electrodes, in order to have a comparison with our previous works in this field. Cyclic voltammetry indicated largest enhanced activity of the enzyme at the MWCNT-modified surface. The role of the nanotubes in mediating electron transfer to the cytochrome P450scc was verified as further improved with respect to the case of rhodium\u2013graphite electrodes modified by the use of gold nanoparticles. The sensitivity of our system in cholesterol sensing is higher by orders of magnitude with respect to other similar systems very recently published that are based on cholesterol oxidase and esterase. The electron transfer improvement attained by the use of MWCNT in P450-based cholesterol biosensors was demonstrated to be larger than 2.4 times with respect to the use of gold nanoparticles and 17.8 times larger with respect to the case of simple bare electrodes. The sensitivity was equal to 1.12 μA/(mM mm2) and the linearity of the biosensor response was improved with respect to the use of gold nanoparticles