32 research outputs found

    Experimental and Computational Investigation of Microbubble Formation in a Single Capillary Embedded T‑junction Microfluidic Device

    No full text
    In recent years, there has been a notable increase in the interest toward microfluidic devices for microbubble synthesis. The upsurge can be primarily attributed to the exceptional control these devices offer in terms of both the size and the size distribution of microbubbles. Among various microfluidic devices available, capillary-embedded T-junction microfluidic (CETM) devices have been extensively used for the synthesis of microbubbles. One distinguishing feature of CETM devices from conventional T-junction devices is the existence of a wall at the right-most end, which causes a backflow of the continuous phase at the mixing zone during microbubble formation. The back flow at the mixing zone can have several implications during microbubble formation. It can possibly affect the local velocity and shearing force at the mixing zone, which in turn can affect the size and production rate of the microbubbles. Therefore, in this work, we experimentally and computationally understand the process of microbubble formation in CETM devices. The process is modeled using computational fluid dynamics (CFD) with the volume-of-fluid approach, which solves the Navier–Stokes equations for both the gas and liquid phases. Three scenarios with a constant liquid velocity of 0.053 m/s with varying gas velocity and three with a constant gas velocity of 0.049 m/s at different liquid velocities were explored. Increase in the liquid and gas velocity during microbubble formation was found to enhance production rates in both experiments and simulations. Additionally, the change in microbubble size with the change in liquid velocity was found to agree closely with the findings of the simulation with a coefficient of variation of 10%. When plotted against the time required for microbubble generation, the fluctuations in the pressure showed recurrent crests and troughs throughout the microbubble formation process. The understanding of microbubble formation in CETM devices in the presence of backflow will allow improvement in size reduction of microbubbles

    Experimental and Computational Investigation of Microbubble Formation in a Single Capillary Embedded T‑junction Microfluidic Device

    No full text
    In recent years, there has been a notable increase in the interest toward microfluidic devices for microbubble synthesis. The upsurge can be primarily attributed to the exceptional control these devices offer in terms of both the size and the size distribution of microbubbles. Among various microfluidic devices available, capillary-embedded T-junction microfluidic (CETM) devices have been extensively used for the synthesis of microbubbles. One distinguishing feature of CETM devices from conventional T-junction devices is the existence of a wall at the right-most end, which causes a backflow of the continuous phase at the mixing zone during microbubble formation. The back flow at the mixing zone can have several implications during microbubble formation. It can possibly affect the local velocity and shearing force at the mixing zone, which in turn can affect the size and production rate of the microbubbles. Therefore, in this work, we experimentally and computationally understand the process of microbubble formation in CETM devices. The process is modeled using computational fluid dynamics (CFD) with the volume-of-fluid approach, which solves the Navier–Stokes equations for both the gas and liquid phases. Three scenarios with a constant liquid velocity of 0.053 m/s with varying gas velocity and three with a constant gas velocity of 0.049 m/s at different liquid velocities were explored. Increase in the liquid and gas velocity during microbubble formation was found to enhance production rates in both experiments and simulations. Additionally, the change in microbubble size with the change in liquid velocity was found to agree closely with the findings of the simulation with a coefficient of variation of 10%. When plotted against the time required for microbubble generation, the fluctuations in the pressure showed recurrent crests and troughs throughout the microbubble formation process. The understanding of microbubble formation in CETM devices in the presence of backflow will allow improvement in size reduction of microbubbles

    Experimental and Computational Investigation of Microbubble Formation in a Single Capillary Embedded T‑junction Microfluidic Device

    No full text
    In recent years, there has been a notable increase in the interest toward microfluidic devices for microbubble synthesis. The upsurge can be primarily attributed to the exceptional control these devices offer in terms of both the size and the size distribution of microbubbles. Among various microfluidic devices available, capillary-embedded T-junction microfluidic (CETM) devices have been extensively used for the synthesis of microbubbles. One distinguishing feature of CETM devices from conventional T-junction devices is the existence of a wall at the right-most end, which causes a backflow of the continuous phase at the mixing zone during microbubble formation. The back flow at the mixing zone can have several implications during microbubble formation. It can possibly affect the local velocity and shearing force at the mixing zone, which in turn can affect the size and production rate of the microbubbles. Therefore, in this work, we experimentally and computationally understand the process of microbubble formation in CETM devices. The process is modeled using computational fluid dynamics (CFD) with the volume-of-fluid approach, which solves the Navier–Stokes equations for both the gas and liquid phases. Three scenarios with a constant liquid velocity of 0.053 m/s with varying gas velocity and three with a constant gas velocity of 0.049 m/s at different liquid velocities were explored. Increase in the liquid and gas velocity during microbubble formation was found to enhance production rates in both experiments and simulations. Additionally, the change in microbubble size with the change in liquid velocity was found to agree closely with the findings of the simulation with a coefficient of variation of 10%. When plotted against the time required for microbubble generation, the fluctuations in the pressure showed recurrent crests and troughs throughout the microbubble formation process. The understanding of microbubble formation in CETM devices in the presence of backflow will allow improvement in size reduction of microbubbles

    Experimental and Computational Investigation of Microbubble Formation in a Single Capillary Embedded T‑junction Microfluidic Device

    No full text
    In recent years, there has been a notable increase in the interest toward microfluidic devices for microbubble synthesis. The upsurge can be primarily attributed to the exceptional control these devices offer in terms of both the size and the size distribution of microbubbles. Among various microfluidic devices available, capillary-embedded T-junction microfluidic (CETM) devices have been extensively used for the synthesis of microbubbles. One distinguishing feature of CETM devices from conventional T-junction devices is the existence of a wall at the right-most end, which causes a backflow of the continuous phase at the mixing zone during microbubble formation. The back flow at the mixing zone can have several implications during microbubble formation. It can possibly affect the local velocity and shearing force at the mixing zone, which in turn can affect the size and production rate of the microbubbles. Therefore, in this work, we experimentally and computationally understand the process of microbubble formation in CETM devices. The process is modeled using computational fluid dynamics (CFD) with the volume-of-fluid approach, which solves the Navier–Stokes equations for both the gas and liquid phases. Three scenarios with a constant liquid velocity of 0.053 m/s with varying gas velocity and three with a constant gas velocity of 0.049 m/s at different liquid velocities were explored. Increase in the liquid and gas velocity during microbubble formation was found to enhance production rates in both experiments and simulations. Additionally, the change in microbubble size with the change in liquid velocity was found to agree closely with the findings of the simulation with a coefficient of variation of 10%. When plotted against the time required for microbubble generation, the fluctuations in the pressure showed recurrent crests and troughs throughout the microbubble formation process. The understanding of microbubble formation in CETM devices in the presence of backflow will allow improvement in size reduction of microbubbles

    Experimental and Computational Investigation of Microbubble Formation in a Single Capillary Embedded T‑junction Microfluidic Device

    No full text
    In recent years, there has been a notable increase in the interest toward microfluidic devices for microbubble synthesis. The upsurge can be primarily attributed to the exceptional control these devices offer in terms of both the size and the size distribution of microbubbles. Among various microfluidic devices available, capillary-embedded T-junction microfluidic (CETM) devices have been extensively used for the synthesis of microbubbles. One distinguishing feature of CETM devices from conventional T-junction devices is the existence of a wall at the right-most end, which causes a backflow of the continuous phase at the mixing zone during microbubble formation. The back flow at the mixing zone can have several implications during microbubble formation. It can possibly affect the local velocity and shearing force at the mixing zone, which in turn can affect the size and production rate of the microbubbles. Therefore, in this work, we experimentally and computationally understand the process of microbubble formation in CETM devices. The process is modeled using computational fluid dynamics (CFD) with the volume-of-fluid approach, which solves the Navier–Stokes equations for both the gas and liquid phases. Three scenarios with a constant liquid velocity of 0.053 m/s with varying gas velocity and three with a constant gas velocity of 0.049 m/s at different liquid velocities were explored. Increase in the liquid and gas velocity during microbubble formation was found to enhance production rates in both experiments and simulations. Additionally, the change in microbubble size with the change in liquid velocity was found to agree closely with the findings of the simulation with a coefficient of variation of 10%. When plotted against the time required for microbubble generation, the fluctuations in the pressure showed recurrent crests and troughs throughout the microbubble formation process. The understanding of microbubble formation in CETM devices in the presence of backflow will allow improvement in size reduction of microbubbles

    Experimental and Computational Investigation of Microbubble Formation in a Single Capillary Embedded T‑junction Microfluidic Device

    No full text
    In recent years, there has been a notable increase in the interest toward microfluidic devices for microbubble synthesis. The upsurge can be primarily attributed to the exceptional control these devices offer in terms of both the size and the size distribution of microbubbles. Among various microfluidic devices available, capillary-embedded T-junction microfluidic (CETM) devices have been extensively used for the synthesis of microbubbles. One distinguishing feature of CETM devices from conventional T-junction devices is the existence of a wall at the right-most end, which causes a backflow of the continuous phase at the mixing zone during microbubble formation. The back flow at the mixing zone can have several implications during microbubble formation. It can possibly affect the local velocity and shearing force at the mixing zone, which in turn can affect the size and production rate of the microbubbles. Therefore, in this work, we experimentally and computationally understand the process of microbubble formation in CETM devices. The process is modeled using computational fluid dynamics (CFD) with the volume-of-fluid approach, which solves the Navier–Stokes equations for both the gas and liquid phases. Three scenarios with a constant liquid velocity of 0.053 m/s with varying gas velocity and three with a constant gas velocity of 0.049 m/s at different liquid velocities were explored. Increase in the liquid and gas velocity during microbubble formation was found to enhance production rates in both experiments and simulations. Additionally, the change in microbubble size with the change in liquid velocity was found to agree closely with the findings of the simulation with a coefficient of variation of 10%. When plotted against the time required for microbubble generation, the fluctuations in the pressure showed recurrent crests and troughs throughout the microbubble formation process. The understanding of microbubble formation in CETM devices in the presence of backflow will allow improvement in size reduction of microbubbles

    Experimental and Computational Investigation of Microbubble Formation in a Single Capillary Embedded T‑junction Microfluidic Device

    No full text
    In recent years, there has been a notable increase in the interest toward microfluidic devices for microbubble synthesis. The upsurge can be primarily attributed to the exceptional control these devices offer in terms of both the size and the size distribution of microbubbles. Among various microfluidic devices available, capillary-embedded T-junction microfluidic (CETM) devices have been extensively used for the synthesis of microbubbles. One distinguishing feature of CETM devices from conventional T-junction devices is the existence of a wall at the right-most end, which causes a backflow of the continuous phase at the mixing zone during microbubble formation. The back flow at the mixing zone can have several implications during microbubble formation. It can possibly affect the local velocity and shearing force at the mixing zone, which in turn can affect the size and production rate of the microbubbles. Therefore, in this work, we experimentally and computationally understand the process of microbubble formation in CETM devices. The process is modeled using computational fluid dynamics (CFD) with the volume-of-fluid approach, which solves the Navier–Stokes equations for both the gas and liquid phases. Three scenarios with a constant liquid velocity of 0.053 m/s with varying gas velocity and three with a constant gas velocity of 0.049 m/s at different liquid velocities were explored. Increase in the liquid and gas velocity during microbubble formation was found to enhance production rates in both experiments and simulations. Additionally, the change in microbubble size with the change in liquid velocity was found to agree closely with the findings of the simulation with a coefficient of variation of 10%. When plotted against the time required for microbubble generation, the fluctuations in the pressure showed recurrent crests and troughs throughout the microbubble formation process. The understanding of microbubble formation in CETM devices in the presence of backflow will allow improvement in size reduction of microbubbles

    Enhancing In Vitro Stability of Albumin Microbubbles Produced Using Microfluidic T‑Junction Device

    No full text
    Microfluidics is an efficient technique for continuous synthesis of monodispersed microbubbles. However, microbubbles produced using microfluidic devices possess lower stability due to quick dissolution of core gas when exposed to an aqueous environment. This work aims at generating highly stable monodispersed albumin microbubbles using microfluidic T-junction devices. Microbubble generation was facilitated by an aqueous phase consisting of bovine serum albumin (BSA) as a model protein and nitrogen (N2) gas. Microbubbles were chemically cross-linked using dilute glutaraldehyde (0.75% v/v) solution and thermally cross-linked by collecting microbubbles in hot water maintained at 368 (±2) K. These microbubbles were then subjected to in vitro dissolution in an air-saturated water. Microbubbles cross-linked with a combined treatment of thermal and chemical cross-linking (TC & CC) had longer dissolution time compared to microbubbles chemically cross-linked (CC) alone, thermally cross-linked (TC) alone, and non-cross-linked microbubbles. Circular dichroism (CD) spectroscopy analysis revealed that percent reduction in alpha-helices of BSA was higher for the combined treatment of TC & CC when compared to other treatments. In contrast to non-cross-linked microbubbles where microbubble shell dissolved completely, a significant shell detachment was observed during the final phase of the dissolution for cross-linked microbubbles captured using high speed camera, depending upon the extent of cross-linking of the microbubble shell. SEM micrographs of the microbubble shell revealed the shell thickness of microbubbles treated with TC & CC to be highest compared to only thermally or only chemically cross-linked microbubbles. Comparison of microbubble dissolution data to a mass transfer model showed that shell resistance to gas permeation was highest for microbubbles subjected to a combined treatment of TC & CC

    Enhancing In Vitro Stability of Albumin Microbubbles Produced Using Microfluidic T‑Junction Device

    No full text
    Microfluidics is an efficient technique for continuous synthesis of monodispersed microbubbles. However, microbubbles produced using microfluidic devices possess lower stability due to quick dissolution of core gas when exposed to an aqueous environment. This work aims at generating highly stable monodispersed albumin microbubbles using microfluidic T-junction devices. Microbubble generation was facilitated by an aqueous phase consisting of bovine serum albumin (BSA) as a model protein and nitrogen (N2) gas. Microbubbles were chemically cross-linked using dilute glutaraldehyde (0.75% v/v) solution and thermally cross-linked by collecting microbubbles in hot water maintained at 368 (±2) K. These microbubbles were then subjected to in vitro dissolution in an air-saturated water. Microbubbles cross-linked with a combined treatment of thermal and chemical cross-linking (TC & CC) had longer dissolution time compared to microbubbles chemically cross-linked (CC) alone, thermally cross-linked (TC) alone, and non-cross-linked microbubbles. Circular dichroism (CD) spectroscopy analysis revealed that percent reduction in alpha-helices of BSA was higher for the combined treatment of TC & CC when compared to other treatments. In contrast to non-cross-linked microbubbles where microbubble shell dissolved completely, a significant shell detachment was observed during the final phase of the dissolution for cross-linked microbubbles captured using high speed camera, depending upon the extent of cross-linking of the microbubble shell. SEM micrographs of the microbubble shell revealed the shell thickness of microbubbles treated with TC & CC to be highest compared to only thermally or only chemically cross-linked microbubbles. Comparison of microbubble dissolution data to a mass transfer model showed that shell resistance to gas permeation was highest for microbubbles subjected to a combined treatment of TC & CC
    corecore