200 research outputs found

    Synergistic growth factor microenvironments

    Get PDF
    Growth factors (GF) are remarkably powerful signalling molecules that orchestrate developmental biology. GFs are currently used in medjcal applications with limited success but it is clear that if their potential can be harnessed for biomedicine then they could underpin the discipline of regenerative medicine. However, while we understand that biology uses cell-secreted growth factors tethered to the ECM, biologists typically employ GFs in soluble format at high concentrations. When used in vivo, this causes off-target, unwanted effects, which severely limits their use. There is a vast amount of literature dealing with material systems that control the delivery of GFs. However, it was soon observed that GFs could be more effectively presented bound to surfaces from a solid-phase state rather than in soluble form, recapitulating the way the extracellular matrix (ECM) binds GFs. In parallel, evidence was found that within the ECM, GFs can actually work in cooperation with integrins and that this produced ehnaced GF signalling due to the crosstalk between both receptors. Recently this knowledge was used to engineer microenvironments that target simultaneous integrin and GF receptor engagement seeking to maximise GF effects in vitro (e.g. in terms of stem cell differentiation) but also tissue repair in vivo (e.g. bone regeneration and wound healing). This feature article introduces the concept of synergistic GF/integrin signalling and then introduces GF delivery systems that were key in the development of more advanced synergistic growth factor microenvironments

    Designing stem cell niches for differentiation and self-renewal

    Get PDF
    Mesenchymal stem cells, characterized by their ability to differentiate into skeletal tissues and self-renew, hold great promise for both regenerative medicine and novel therapeutic discovery. However, their regenerative capacity is retained only when in contact with their specialized microenvironment, termed the stem cell niche. Niches provide structural and functional cues that are both biochemical and biophysical, stem cells integrate this complex array of signals with intrinsic regulatory networks to meet physiological demands. Although, some of these regulatory mechanisms remain poorly understood or difficult to harness with traditional culture systems. Biomaterial strategies are being developed that aim to recapitulate stem cell niches, by engineering microenvironments with physiological-like niche properties that aim to elucidate stem cell-regulatory mechanisms, and to harness their regenerative capacity in vitro. In the future, engineered niches will prove important tools for both regenerative medicine and therapeutic discoveries

    PLLA/ZnO nanocomposites: dynamic surfaces to harness cell differentiation

    Get PDF
    This work investigates the effect of the sequential availability of ZnO nanoparticles, (nanorods of ∼40 nm) loaded within a degradable poly(lactic acid) (PLLA) matrix, in cell differentiation. The system constitutes a dynamic surface, in which nanoparticles are exposed as the polymer matrix degrades. ZnO nanoparticles were loaded into PLLA and the system was measured at different time points to characterise the time evolution of the physicochemical properties, including wettability and thermal properties. The micro and nanostructure were also investigated using AFM, SEM and TEM images. Cellular experiments with C2C12 myoblasts show that cell differentiation was significantly enhanced on ZnO nanoparticles—loaded PLLA, as the polymer degrades and the availability of nanoparticles become more apparent, whereas the release of zinc within the culture medium was negligible. Our results suggest PLLA/ZnO nanocomposites can be used as a dynamic system where nanoparticles are exposed during degradation, activating the material surface and driving cell differentiation

    Current approaches for modulation of the nanoscale interface in the regulation of cell behavior

    Get PDF
    Regulation of cell behavior in response to nanoscale features has been the focus of much research in recent years and the successful generation of nanoscale features capable of mimicking the natural nanoscale interface has been of great interest in the field of biomaterials research. In this review, we discuss relevant nanofabrication techniques and how they are combined with bioengineering applications to mimic the natural extracellular matrix (ECM) and create valuable nanoscale interfaces

    Comparative study of osteogenic activity of multilayers made of synthetic and biogenic polyelectrolytes

    Get PDF
    Polyelectrolyte multilayer (PEM) coatings on biomaterials are applied to tailor adhesion, growth, and function of cells on biomedical implants. Here, biogenic and synthetic polyelectrolytes (PEL) are used for layer-by-layer assembly to study the osteogenic activity of PEM with human osteosarcoma MG-63 cells in a comparative manner. Formation of PEM is achieved with biogenic PEL fibrinogen (FBG) and poly-l-lysine (PLL) as well as biotinylated chondroitin sulfate (BCS) and avidin (AVI), while poly(allylamine hydrochloride) (PAH) and polystyrene sulfonate (PSS) represent a fully synthetic PEM used as a reference system here. Surface plasmon resonance measurements show highest layer mass for FBG/PLL and similar for PSS/PAH and BCS/AVI systems, while water contact angle and zeta potential measurements indicate larger differences for PSS/PAH and FBG/PLL but not for BCS/AVI multilayers. All PEM systems support cell adhesion and growth and promote osteogenic differentiation as well. However, FBG/PLL layers are superior regarding MG-63 cell adhesion during short-term culture, while the BCS/AVI system increases alkaline phosphatase activity in long-term culture. Particularly, a multilayer system based on affinity interaction like BCS/AVI may be useful for controlled presentation of biotinylated growth factors to promote growth and differentiation of cells for biomedical applications

    Sensing the difference: the influence of anisotropic cues on cell behavior

    Get PDF
    From tissue morphogenesis to homeostasis, cells continuously experience and respond to physical, chemical and biological cues commonly presented in gradients. In this article we focus our discussion on the importance of nano/micro topographic cues on cell activity, and the role of anisotropic milieus play on cell behavior, mostly adhesion and migration. We present the need to study physiological gradients in vitro. To do this, we review different cell migration mechanisms and how adherent cells react to the presence of complex tissue-like environments and cell-surface stimulation in 2D and 3D (e.g. ventral/dorsal anisotropy)

    Mechanotransduction and growth factor signalling to engineer cellular microenvironments

    Get PDF
    Engineering cellular microenvironments involves biochemical factors, the extracellular matrix (ECM) and the interaction with neighbouring cells. This progress report provides a critical overview of key studies that incorporate growth factor (GF) signalling and mechanotransduction into the design of advanced microenvironments. Materials systems have been developed for surface-bound presentation of GFs, either covalently tethered or sequestered through physico-chemical affinity to the matrix, as an alternative to soluble GFs. Furthermore, some materials contain both GF and integrin binding regions and thereby enable synergistic signalling between the two. Mechanotransduction refers to the ability of the cells to sense physical properties of the ECM and to transduce them into biochemical signals. Various aspects of the physics of the ECM, i.e. stiffness, geometry and ligand spacing, as well as time-dependent properties, such as matrix stiffening, degradability, viscoelasticity, surface mobility as well as spatial patterns and gradients of physical cues are discussed. To conclude, various examples illustrate the potential for cooperative signalling of growth factors and the physical properties of the microenvironment for potential applications in regenerative medicine, cancer research and drug testing

    Tuning the matrix: recent advances in mechanobiology unveiled through polyacrylamide hydrogels

    Full text link
    Over the past 30 years, polyacrylamide (PAAm) hydrogels have become essential tools to mimic the mechanical properties, chemical composition, and dimensionality of the extracellular matrix (ECM) in in vitro mechanobiology studies. This brief review highlights recent developments that have transformed PAAm hydrogels from simple 2D static elastic hydrogels to complex ECM-mimicking systems involving protein micropatterning, mechanical patterning, stretching, DNA tension probes, viscoelasticity, and the microfabrication of 3D systems. We focus on novel mechanobiological questions that have been elucidated using these platforms and give a perspective on the future of PAAm hydrogels for mechanobiology research

    Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

    Get PDF
    Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications
    • …
    corecore