55 research outputs found
Critical glycosylated residues in exon three of erythrocyte Glycophorin A engage Plasmodium falciparum EBA-175 and define receptor specificity
Erythrocyte invasion is an essential step in the pathogenesis of malaria. The erythrocyte binding-like (EBL) family of Plasmodium falciparum proteins recognizes glycophorins (Gp) on erythrocytes and plays a critical role in attachment during invasion. However, the molecular basis for specific receptor recognition by each parasite ligand has remained elusive, as is the case with the ligand/receptor pair P. falciparum EBA-175 (PfEBA-175)/GpA. This is due largely to difficulties in producing properly glycosylated and functional receptors. Here, we developed an expression system to produce recombinant glycosylated and functional GpA, as well as mutations and truncations. We identified the essential binding region and determinants for PfEBA-175 engagement, demonstrated that these determinants are required for the inhibition of parasite growth, and identified the glycans important in mediating the PfEBA-175–GpA interaction. The results suggest that PfEBA-175 engages multiple glycans of GpA encoded by exon 3 and that the presentation of glycans is likely required for high-avidity binding. The absence of exon 3 in GpB and GpE due to a splice site mutation confers specific recognition of GpA by PfEBA-175. We speculate that GpB and GpE may have arisen due to selective pressure to lose the PfEBA-175 binding site in GpA. The expression system described here has wider application for examining other EBL members important in parasite invasion, as well as additional pathogens that recognize glycophorins. The ability to define critical binding determinants in receptor-ligand interactions, as well as a system to genetically manipulate glycosylated receptors, opens new avenues for the design of interventions that disrupt parasite invasion
Structural analysis of the synthetic Duffy Binding Protein (DBP) antigen DEKnull relevant for Plasmodium vivax malaria vaccine design
The Plasmodium vivax vaccine candidate Duffy Binding Protein (DBP) is a protein necessary for P. vivax invasion of reticulocytes. The polymorphic nature of DBP induces strain-specific immune responses that pose unique challenges for vaccine development. DEKnull is a synthetic DBP based antigen that has been engineered through mutation to enhance induction of blocking inhibitory antibodies. We determined the x-ray crystal structure of DEKnull to identify if any conformational changes had occurred upon mutation. Computational and experimental analyses assessed immunogenicity differences between DBP and DEKnull epitopes. Functional binding assays with monoclonal antibodies were used to interrogate the available epitopes in DEKnull. We demonstrate that DEKnull is structurally similar to the parental Sal1 DBP. The DEKnull mutations do not cause peptide backbone shifts within the polymorphic loop, or at either the DBP dimerization interface or DARC receptor binding pockets, two important structurally conserved protective epitope motifs. All B-cell epitopes, except for the mutated DEK motif, are conserved between DEKnull and DBP. The DEKnull protein retains binding to conformationally dependent inhibitory antibodies. DEKnull is an iterative improvement of DBP as a vaccine candidate. DEKnull has reduced immunogenicity to polymorphic regions responsible for strain-specific immunity while retaining conserved protein folds necessary for induction of strain-transcending blocking inhibitory antibodies
Structural and functional basis for inhibition of erythrocyte invasion by antibodies that target Plasmodium falciparum EBA-175
Disrupting erythrocyte invasion by Plasmodium falciparum is an attractive approach to combat malaria. P. falciparum EBA-175 (PfEBA-175) engages the host receptor Glycophorin A (GpA) during invasion and is a leading vaccine candidate. Antibodies that recognize PfEBA-175 can prevent parasite growth, although not all antibodies are inhibitory. Here, using x-ray crystallography, small-angle x-ray scattering and functional studies, we report the structural basis and mechanism for inhibition by two PfEBA-175 antibodies. Structures of each antibody in complex with the PfEBA-175 receptor binding domain reveal that the most potent inhibitory antibody, R217, engages critical GpA binding residues and the proposed dimer interface of PfEBA-175. A second weakly inhibitory antibody, R218, binds to an asparagine-rich surface loop. We show that the epitopes identified by structural studies are critical for antibody binding. Together, the structural and mapping studies reveal distinct mechanisms of action, with R217 directly preventing receptor binding while R218 allows for receptor binding. Using a direct receptor binding assay we show R217 directly blocks GpA engagement while R218 does not. Our studies elaborate on the complex interaction between PfEBA-175 and GpA and highlight new approaches to targeting the molecular mechanism of P. falciparum invasion of erythrocytes. The results suggest studies aiming to improve the efficacy of blood-stage vaccines, either by selecting single or combining multiple parasite antigens, should assess the antibody response to defined inhibitory epitopes as well as the response to the whole protein antigen. Finally, this work demonstrates the importance of identifying inhibitory-epitopes and avoiding decoy-epitopes in antibody-based therapies, vaccines and diagnostics
Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion
The most lethal form of malaria in humans is caused by Plasmodium falciparum. These parasites invade erythrocytes, a complex process involving multiple ligand-receptor interactions. The parasite makes initial contact with the erythrocyte followed by dramatic deformations linked to the function of the Erythrocyte binding antigen family and P. falciparum reticulocyte binding-like families. We show EBA-175 mediates substantial changes in the deformability of erythrocytes by binding to glycophorin A and activating a phosphorylation cascade that includes erythrocyte cytoskeletal proteins resulting in changes in the viscoelastic properties of the host cell. TRPM7 kinase inhibitors FTY720 and waixenicin A block the changes in the deformability of erythrocytes and inhibit merozoite invasion by directly inhibiting the phosphorylation cascade. Therefore, binding of P. falciparum parasites to the erythrocyte directly activate a signaling pathway through a phosphorylation cascade and this alters the viscoelastic properties of the host membrane conditioning it for successful invasion
Implications of conformational flexibility, lipid binding, and regulatory domains in cell-traversal protein CelTOS for apicomplexan migration
Malaria and other apicomplexan-caused diseases affect millions of humans, agricultural animals, and pets. Cell traversal is a common feature used by multiple apicomplexan parasites to migrate through host cells and can be exploited to develop therapeutics against these deadly parasites. Here, we provide insights into the mechanism of the Cell-traversal protein for ookinetes and sporozoites (CelTOS), a conserved cell-traversal protein in apicomplexan parasites and malaria vaccine candidate. CelTOS has previously been shown to form pores in cell membranes to enable traversal of parasites through cells. We establish roles for the distinct protein regions of Plasmodium vivax CelTOS and examine the mechanism of pore formation. We further demonstrate that CelTOS dimer dissociation is required for pore formation, as disulfide bridging between monomers inhibits pore formation, and this inhibition is rescued by disulfide-bridge reduction. We also show that a helix-destabilizing amino acid, Pro127, allows CelTOS to undergo significant conformational changes to assemble into pores. The flexible C terminus of CelTOS is a negative regulator that limits pore formation. Finally, we highlight that lipid binding is a prerequisite for pore assembly as mutation of a phospholipids-binding site in CelTOS resulted in loss of lipid binding and abrogated pore formation. These findings identify critical regions in CelTOS and will aid in understanding the egress mechanism of malaria and other apicomplexan parasites as well as have implications for studying the function of other essential pore-forming proteins
- …