407 research outputs found

    Green Valley Galaxies

    Full text link
    The "green valley" is a wide region separating the blue and the red peaks in the ultraviolet-optical color magnitude diagram, first revealed using GALEX UV photometry. The term was coined by Christopher Martin in 2005. Green valley highlights the discriminating power of UV to very low relative levels of ongoing star formation, to which the optical colors, including u-r, are insensitive. It corresponds to massive galaxies below the star-forming "main" sequence, and therefore represents a critical tool for the study of the quenching of star formation and its possible resurgence in otherwise quiescent galaxies. This article reviews the results pertaining to morphology, structure, environment, dust content and gas properties of green valley galaxies in the local universe. Their relationship to AGN is also discussed. Attention is given to biases emerging from defining the "green valley" using optical colors. We review various evolutionary scenarios and we present evidence for a new, quasi-static view of the green valley, in which the majority of galaxies currently in the green valley were only partially quenched in the distant past and now participate in a slow cosmic decline of star formation, which also drives down the activity on the main sequence, presumably as a result of the dwindling accretion/cooling onto galaxy disks.Comment: Invited review. 13 pages. Comments welcom

    Star Formation Rate Distributions: Inadequacy of the Schechter Function

    Get PDF
    In this paper we posit that galaxy luminosity functions (LFs) come in two fundamentally different types depending on whether the luminosity traces galaxy stellar mass or its current star formation rate (SFR). Mass function types reflect the older stars and therefore the stellar mass distribution, while SFR function types arise from the young stars and hence the distribution of SFRs. Optical and near-infrared LFs are of the mass function type, and are well fit by a Schechter function (power law with an exponential cutoff at the bright end). In contrast, LFs of the SFR function type are of a different form, one that cannot be adequately described by a Schechter function. We demonstrate this difference by generating SFR distributions for mock samples of galaxies drawn from a Schechter stellar mass distribution along with established empirical relations between the SFR and stellar mass. Compared with the Schechter function, SFR distributions have a shallower decline at the bright end, which can be traced to the large intrinsic scatter of SFRs at any given stellar mass. A superior description of SFR distributions is given by the "Saunders" function, which combines a power law with a Gaussian at the high end. We show that the Schechter-like appearance of UV and H alpha LFs, although they are LFs of SFR function type, results when luminosities are not corrected for dust, or when average statistical corrections are used because individual attenuation measurements are not available. We thus infer that the non-Schechter form of the far-IR LFs is a true reflection of the underlying SFR distribution, rather than the purported artifact of AGN contamination.Comment: Revised after a referee report. Submitted to ApJ. Compatible with B/W printers. Comments are welcom

    Dust Attenuation Curves in the Local Universe: Demographics and New Laws for Star-forming Galaxies and High-redshift Analogs

    Get PDF
    We study dust attenuation curves of 230,000 individual galaxies in the local universe, ranging from quiescent to intensely star-forming systems, using GALEX, SDSS, and WISE photometry calibrated on Herschel-ATLAS. We use a new method of constraining SED fits with infrared luminosity (SED+LIR fitting), and parameterized attenuation curves determined with the CIGALE SED fitting code. Attenuation curve slopes and UV bump strengths are reasonably well constrained independently from one another. We find that Aλ/AVA_{\lambda}/A_V attenuation curves exhibit a very wide range of slopes that are on average as steep as the SMC curve slope. The slope is a strong function of optical opacity. Opaque galaxies have shallower curves - in agreement with recent radiate transfer models. The dependence of slopes on the opacity produces an apparent dependence on stellar mass: more massive galaxies having shallower slopes. Attenuation curves exhibit a wide range of UV bump amplitudes, from none to MW-like; with an average strength 1/3 of the MW bump. Notably, local analogs of high-redshift galaxies have an average curve that is somewhat steeper than the SMC curve, with a modest UV bump that can be to first order ignored, as its effect on the near-UV magnitude is 0.1 mag. Neither the slopes nor the strengths of the UV bump depend on gas-phase metallicity. Functional forms for attenuation laws are presented for normal star-forming galaxies, high-z analogs and quiescent galaxies. We release the catalog of associated SFRs and stellar masses (GSWLC-2).Comment: Accepted to ApJ. GSWLC-2 catalog of SED+LIR SFRs and M* to be released Jun 1 at http://pages.iu.edu/~salims/gswlc

    On the Mass-Metallicity-Star Formation Rate Relation for Galaxies at z2z\sim 2

    Get PDF
    Recent studies have shown that the local mass-metallicity (M-Z) relation depends on the specific star formation rate (SSFR). Whether such a dependence exists at higher redshifts, and whether the resulting M-Z-SFR relation is redshift invariant, is debated. We re-examine these issues by applying the non-parametric techniques of Salim et al. (2014) to ~130 z2.3z\sim2.3 galaxies with N2 and O3 measurements from KBSS (Steidel et al. 2014). We find that the KBSS M-Z relation depends on SSFR at intermediate masses, where such dependence exists locally. KBSS and SDSS galaxies of the same mass and SSFR ("local analogs") are similarly offset in the BPT diagram relative to the bulk of local star-forming galaxies, and thus we posit that metallicities can be compared self-consistently at different redshifts as long as the masses and SSFRs of the galaxies are similar. We find that the M-Z-SFR relation of z2z\sim2 galaxies is consistent with the local one at logM<10\log M_*<10, but is offset up to -0.25 dex at higher masses, so it is altogether not redshift invariant. This high-mass offset could arise from a bias that high-redshift spectroscopic surveys have against high-metallicity galaxies, but additional evidence disfavors this possibility. We identify three causes for the reported discrepancy between N2 and O3N2 metallicities at z2z\sim2: (1) a smaller offset that is also present for SDSS galaxies, which we remove with new N2 calibration, (2) a genuine offset due to differing ISM condition, which is also present in local analogs, (3) an additional offset due to unrecognized AGN contamination.Comment: ApJ accepted. 14 pages. Comments welcom
    corecore