72 research outputs found

    Valence and Na content dependences of superconductivity in NaxCoO2.yH2O

    Full text link
    Various samples of sodium cobalt oxyhydrate with relatively large amounts of Na+^{+} ions were synthesized by a modified soft-chemical process in which a NaOH aqueous solution was added in the final step of the procedure. From these samples, a superconducting phase diagram was determined for a section of a cobalt valence of \sim+3.48, which was compared with a previously obtained one of \sim+3.40. The superconductivity was significantly affected by the isovalent exchanger of Na+^{+} and H3_{3}O+^{+}, rather than by variation of Co valence, suggesting the presence of multiple kinds of Fermi surface. Furthermore, the high-field magnetic susceptibility measurements for one sample up to 30 T indicated an upper critical field much higher than the Pauli limit supporting the validity of the spin-triplet pairing mechanism.Comment: 4 figures and 1 tabl

    Superconducting phase diagram of NaxCoO2.yH2O

    Full text link
    We synthesized Nax(H3O)zCoO2yH2O samples with various Na/H3O ratios but with the constant Co valence of s = +3.40, and measured their magnetic properties to draw phase diagrams of the system. The superconductivity is very sensitive to the Na/H3O ratio. With varying x under fixed s of +3.40, magnetically ordered phase appears in the intermediate range of x sandwiched by two separated superconducting phases, suggesting that the superconductivity is induced by moderately strong magnetic interactions. In the vicinity of the magnetic phase, transition from the superconducting state to the magnetically ordered state was induced by applying high magnetic field. This transition is of the second order, at least, above 1.8 K. The upper-critical field is expected to be much higher than the Pauli limit for a phase located far away from the magnetic phase regarding the Na/H3O ratio.Comment: proceedings of ISS200

    Na-ion dynamics in Quasi-1D compound NaV2O4

    Full text link
    We have used the pulsed muon source at ISIS to study high-temperature Na-ion dynamics in the quasi-one-dimensional (Q1D) metallic antiferromagnet NaV2O4. By performing systematic zero-field and longitudinal-field measurements as a function of temperature we clearly distinguish that the hopping rate increases exponentially above Tdiff=250 K. The data is well fitted to an Arrhenius type equation typical for a diffusion process, showing that the Na-ions starts to be mobile above Tdiff . Such results makes this compound very interesting for the tuning of Q1D magnetism using atomic-scale ion-texturing through the periodic potential from ordered Na-vacancies. Further, it also opens the door to possible use of NaV2O4 and related compounds in energy related applications.Comment: Accepted for publication in Journal of Physics: Conference Series (2014

    スチルベン誘導体の光化学における周辺環境の効果

    Get PDF
    この博士論文は内容の要約のみの公開(または一部非公開)になっています筑波大学 (University of Tsukuba)201

    スチルベン誘導体の光化学における周辺環境の効果

    Get PDF
    筑波大学 (University of Tsukuba)201

    Pressure-Induced Restoration of the Reversed Crystal-Field Splitting in α\alpha-Sr2_2CrO4_4

    Full text link
    Motivated by an experimental finding that the successive phase transitions in α\alpha-Sr2_2CrO4_4 observed at ambient pressure ceases to exist under high pressures, we carry out the density-functional-theory-based electronic structure calculations and demonstrate that the reversal of the crystal-field splitting reported previously is restored under high pressures, so that the orbital degrees of freedom disappears, resulting in the single phase transition that divides the system into high-temperature Mott insulating and low-temperature antiferromagnetic insulating phases.Comment: 5 pages, 1 figure, to appear in JPS Conf. Proc. (Proceedings for SCES2019

    The magnetic structure of the zigzagzigzag chain family Nax_{x}Ca1x_{1-x}V2_2O4_4 determined by muon-spin rotation

    Full text link
    We present muon-spin rotation measurements on polycrystalline samples of the complete family of the antiferromagnetic (AF) zigzagzigzag chain compounds, Nax_xCa1x_{1-x}V2_2O4_4. In this family, we explore the magnetic properties from the metallic NaV2_2O4_4 to the insulating CaV2_2O4_4. We find a critical xc(0.833)x_c(\sim0.833) which separates the low and high Na-concentration dependent transition temperature and its magnetic ground state. In the x<xcx<x_c compounds, the magnetic ordered phase is characterized by a single homogenous phase and the formation of incommensurate spin-density-wave order. Whereas in the x>xcx>x_c compounds, multiple sub-phases appear with temperature and xx. Based on the muon data obtained in zero external magnetic field, a careful dipolar field simulation was able to reproduce the muon behavior and indicates a modulated helical incommensurate spin structure of the metallic AF phase. The incommensurate modulation period obtained by the simulation agrees with that determined by neutron diffraction.Comment: 7 pages, 7 figures, accepted for publication in PR

    Magnetic nature of wolframite MgReO4_4

    Get PDF
    Rhenium oxides belonging to the family AAReO4_4 where AA is a metal cation, exhibit interesting electronic and magnetic properties. In this study we have utilized the muon spin rotation/relaxation (μ+\mu^+SR) technique to study the magnetic properties of the MgReO4_4 compound. To the best of our knowledge, this is the first investigation reported on this interesting material, that is stabilized in a wolframite crystal structure using a special high-pressure synthesis technique. Bulk magnetic studies show the onset of an antiferromagnetic (AF) long range order, or a possible singlet spin state at TC190T_{\rm C1}\approx90~K, with a subtle second high-temperature transition at TC2280T_{\rm C2}\approx280~K. Both transitions are also confirmed by heat capacity (CpC_p) measurements. From our μ+\mu^+SR measurements, it is clear that the sample enters an AF order below TC1=TN85T_{\rm C1}=T_{\rm N}\approx85~K. We find no evidence of magnetic signal above TNT_{\rm N}, which indicates that TC2T_{\rm C2} is likely linked to a structural transition. Further, via sensitive zero field (ZF) μ+\mu^+SR measurements we find evidence of a spin reorientation at TCant65T_{\rm Cant}\approx65~K. This points towards a transition from a collinear AF into a canted AF order at low temperature, which is proposed to be driven by competing magnetic interactions
    corecore