359 research outputs found

    A lower bound on the quantum query complexity of read-once functions

    Get PDF
    We establish a lower bound of Ω(n)\Omega{(\sqrt{n})} on the bounded-error quantum query complexity of read-once Boolean functions, providing evidence for the conjecture that Ω(D(f))\Omega(\sqrt{D(f)}) is a lower bound for all Boolean functions. Our technique extends a result of Ambainis, based on the idea that successful computation of a function requires ``decoherence'' of initially coherently superposed inputs in the query register, having different values of the function. The number of queries is bounded by comparing the required total amount of decoherence of a judiciously selected set of input-output pairs to an upper bound on the amount achievable in a single query step. We use an extension of this result to general weights on input pairs, and general superpositions of inputs.Comment: 12 pages, LaTe

    A Polynomial Time Algorithm for Lossy Population Recovery

    Full text link
    We give a polynomial time algorithm for the lossy population recovery problem. In this problem, the goal is to approximately learn an unknown distribution on binary strings of length nn from lossy samples: for some parameter μ\mu each coordinate of the sample is preserved with probability μ\mu and otherwise is replaced by a `?'. The running time and number of samples needed for our algorithm is polynomial in nn and 1/ε1/\varepsilon for each fixed μ>0\mu>0. This improves on algorithm of Wigderson and Yehudayoff that runs in quasi-polynomial time for any μ>0\mu > 0 and the polynomial time algorithm of Dvir et al which was shown to work for μ0.30\mu \gtrapprox 0.30 by Batman et al. In fact, our algorithm also works in the more general framework of Batman et al. in which there is no a priori bound on the size of the support of the distribution. The algorithm we analyze is implicit in previous work; our main contribution is to analyze the algorithm by showing (via linear programming duality and connections to complex analysis) that a certain matrix associated with the problem has a robust local inverse even though its condition number is exponentially small. A corollary of our result is the first polynomial time algorithm for learning DNFs in the restriction access model of Dvir et al

    Clustering is difficult only when it does not matter

    Full text link
    Numerous papers ask how difficult it is to cluster data. We suggest that the more relevant and interesting question is how difficult it is to cluster data sets {\em that can be clustered well}. More generally, despite the ubiquity and the great importance of clustering, we still do not have a satisfactory mathematical theory of clustering. In order to properly understand clustering, it is clearly necessary to develop a solid theoretical basis for the area. For example, from the perspective of computational complexity theory the clustering problem seems very hard. Numerous papers introduce various criteria and numerical measures to quantify the quality of a given clustering. The resulting conclusions are pessimistic, since it is computationally difficult to find an optimal clustering of a given data set, if we go by any of these popular criteria. In contrast, the practitioners' perspective is much more optimistic. Our explanation for this disparity of opinions is that complexity theory concentrates on the worst case, whereas in reality we only care for data sets that can be clustered well. We introduce a theoretical framework of clustering in metric spaces that revolves around a notion of "good clustering". We show that if a good clustering exists, then in many cases it can be efficiently found. Our conclusion is that contrary to popular belief, clustering should not be considered a hard task

    Noisy population recovery in polynomial time

    Full text link
    In the noisy population recovery problem of Dvir et al., the goal is to learn an unknown distribution ff on binary strings of length nn from noisy samples. For some parameter μ[0,1]\mu \in [0,1], a noisy sample is generated by flipping each coordinate of a sample from ff independently with probability (1μ)/2(1-\mu)/2. We assume an upper bound kk on the size of the support of the distribution, and the goal is to estimate the probability of any string to within some given error ε\varepsilon. It is known that the algorithmic complexity and sample complexity of this problem are polynomially related to each other. We show that for μ>0\mu > 0, the sample complexity (and hence the algorithmic complexity) is bounded by a polynomial in kk, nn and 1/ε1/\varepsilon improving upon the previous best result of poly(kloglogk,n,1/ε)\mathsf{poly}(k^{\log\log k},n,1/\varepsilon) due to Lovett and Zhang. Our proof combines ideas from Lovett and Zhang with a \emph{noise attenuated} version of M\"{o}bius inversion. In turn, the latter crucially uses the construction of \emph{robust local inverse} due to Moitra and Saks
    corecore