27 research outputs found

    Single shot three-dimensional imaging of dilute atomic clouds

    Get PDF
    Light field microscopy methods together with three dimensional (3D) deconvolution can be used to obtain single shot 3D images of atomic clouds. We demonstrate the method using a test setup which extracts three dimensional images from a fluorescent 87^{87}Rb atomic vapor.Comment: 10 pages, 5 figure

    Numerically exact dynamics of the interacting many-body Schrödinger equation for Bose-Einstein condensates : comparison to Bose-Hubbard and Gross-Pitaevskii theory

    Get PDF
    In this thesis, the physics of trapped, interacting Bose-Einstein condensates is analyzed by solving the many-body Schrödinger equation. Particular emphasis is put on coherence, fragmentation and reduced density matrices. First, the ground state of a trapped Bose-Einstein condensate and its correlation functions are obtained. Then the dynamics of a bosonic Josephson junction is investigated by solving the time-dependent many-body Schrödinger equation numerically exactly. These are the first exact results in literature in this context. It is shown that the standard approximations of the field, Gross-Pitaevskii theory and the Bose-Hubbard model fail at weak interaction strength and within their range of expected validity. For stronger interactions the dynamics becomes strongly correlated and a new equilibration phenomenon is discovered. By comparison with exact results it is shown that a symmetry of the Bose-Hubbard model between attractive and repulsive interactions must be considered an artefact of the model. A conceptual innovation of this thesis are time-dependent Wannier functions. Equations of motion for time-dependent Wannier functions are derived from the variational principle. By comparison with exact results it is shown that lattice models can be greatly improved at little computational cost by letting the Wannier functions of a lattice model become time-dependent

    Quantum dynamics of attractive versus repulsive bosonic Josephson junctions: Bose-Hubbard and full-Hamiltonian results

    Full text link
    The quantum dynamics of one-dimensional bosonic Josephson junctions with attractive and repulsive interparticle interactions is studied using the Bose-Hubbard model and by numerically-exact computations of the full many-body Hamiltonian. A symmetry present in the Bose-Hubbard Hamiltonian dictates an equivalence between the evolution in time of attractive and repulsive Josephson junctions with attractive and repulsive interactions of equal magnitude. The full many-body Hamiltonian does not possess this symmetry and consequently the dynamics of the attractive and repulsive junctions are different.Comment: 9 pages, 2 figure

    Universality of Fragmentation in the Schr\"odinger Dynamics of Bosonic Josephson Junctions

    Full text link
    The many-body Schr\"odinger dynamics of a one-dimensional bosonic Josephson junction is investigated for up to ten thousand bosons and long times. The initial states are fully condensed and the interaction strength is weak. We report on a universal fragmentation dynamics on the many-body level: systems consisting of different numbers of particles fragment to the same value at constant mean-field interaction strength. The phenomenon manifests itself in observables such as the correlation functions of the system. We explain this universal fragmentation dynamics analytically based on the Bose-Hubbard model. We thereby show that the extent to which many-body effects become important at later times depends crucially on the initial state. Even for arbitrarily large particle numbers and arbitrarily weak interaction strength the dynamics is many-body in nature and the fragmentation universal. There is no weakly interacting limit where the Gross-Piatevskii mean-field is valid for long times.Comment: 11 pages, 5 figure

    Accurate multi-boson long-time dynamics in triple-well periodic traps

    Full text link
    To solve the many-boson Schr\"odinger equation we utilize the Multiconfigurational time-dependent Hartree method for bosons (MCTDHB). To be able to attack larger systems and/or to propagate the solution for longer times, we implement a parallel version of the MCTDHB method thereby realizing the recently proposed [Streltsov {\it et al.} arXiv:0910.2577v1] novel idea how to construct efficiently the result of the action of the Hamiltonian on a bosonic state vector. We study the real-space dynamics of repulsive bosonic systems made of N=12, 51 and 3003 bosons in triple-well periodic potentials. The ground state of this system is three-fold fragmented. By suddenly strongly distorting the trap potential, the system performs complex many-body quantum dynamics. At long times it reveals a tendency to an oscillatory behavior around a threefold fragmented state. These oscillations are strongly suppressed and damped by quantum depletions. In spite of the richness of the observed dynamics, the three time-adaptive orbitals of MCTDHB(M=3) are capable to describe the many-boson quantum dynamics of the system for short and intermediate times. For longer times, however, more self-consistent time-adaptive orbitals are needed to correctly describe the non-equilibrium many-body physics. The convergence of the MCTDHB(MM) method with the number MM of self-consistent time-dependent orbitals used is demonstrated.Comment: 37 pages, 7 figure

    Reduced density matrices and coherence of trapped interacting bosons

    Full text link
    The first- and second-order correlation functions of trapped, interacting Bose-Einstein condensates are investigated numerically on a many-body level from first principles. Correlations in real space and momentum space are treated. The coherence properties are analyzed. The results are obtained by solving the many-body Schr\"odinger equation. It is shown in an example how many-body effects can be induced by the trap geometry. A generic fragmentation scenario of a condensate is considered. The correlation functions are discussed along a pathway from a single condensate to a fragmented condensate. It is shown that strong correlations can arise from the geometry of the trap, even at weak interaction strengths. The natural orbitals and natural geminals of the system are obtained and discussed. It is shown how the fragmentation of the condensate can be understood in terms of its natural geminals. The many-body results are compared to those of mean-field theory. The best solution within mean-field theory is obtained. The limits in which mean-field theories are valid are determined. In these limits the behavior of the correlation functions is explained within an analytical model.Comment: 40 pages, 6 figure

    Exact ground state of finite Bose-Einstein condensates on a ring

    Full text link
    The exact ground state of the many-body Schr\"odinger equation for NN bosons on a one-dimensional ring interacting via pairwise δ\delta-function interaction is presented for up to fifty particles. The solutions are obtained by solving Lieb and Liniger's system of coupled transcendental equations for finite NN. The ground state energies for repulsive and attractive interaction are shown to be smoothly connected at the point of zero interaction strength, implying that the \emph{Bethe-ansatz} can be used also for attractive interaction for all cases studied. For repulsive interaction the exact energies are compared to (i) Lieb and Liniger's thermodynamic limit solution and (ii) the Tonks-Girardeau gas limit. It is found that the energy of the thermodynamic limit solution can differ substantially from that of the exact solution for finite NN when the interaction is weak or when NN is small. A simple relation between the Tonks-Girardeau gas limit and the solution for finite interaction strength is revealed. For attractive interaction we find that the true ground state energy is given to a good approximation by the energy of the system of NN attractive bosons on an infinite line, provided the interaction is stronger than the critical interaction strength of mean-field theory.Comment: 28 pages, 11 figure
    corecore