30 research outputs found

    Modeling of the Super-Eddington Phase for Classical Novae: Five IUE Novae

    Full text link
    We present a light curve model for the super-Eddington luminosity phase of five classical novae observed with IUE. Optical and UV light curves are calculated based on the optically thick wind theory with a reduced effective opacity for a porous atmosphere. Fitting a model light curve with the UV 1455 \AA light curve, we determine the white dwarf mass and distance to be (1.3 M_sun, 4.4 kpc) for V693 CrA, (1.05 M_sun, 1.8 kpc) for V1974 Cyg, (0.95 M_sun, 4.1 kpc) for V1668 Cyg, (1.0 M_sun, 2.1 kpc) for V351 Pup, and (1.0 M_sun, 4.3 kpc) for OS And.Comment: 9 pages including 8 figures, to appear in the Astrophysical Journa

    Discovery of the optical counterpart and early optical observations of GRB990712

    Get PDF
    We present the discovery observations of the optical counterpart of the gamma-ray burster GRB990712 taken 4.16 hours after the outburst and discuss its light curve observed in the V, R and I bands during the first ~35 days after the outburst. The observed light curves were fitted with a power-law decay for the optical transient (OT), plus an additional component which was treated in two different ways. First, the additional component was assumed to be an underlying galaxy of constant brightness. The resulting slope of the decay is 0.97+/-0.05 and the magnitudes of the underlying galaxy are: V = 22.3 +/- 0.05, R = 21.75 +/- 0.05 and I = 21.35 +/- 0.05. Second, the additional component was assumed to be a galaxy plus an underlying supernova with a time-variable brightness identical to that of GRB980425, appropriately scaled to the redshift of GRB990712. The resulting slope of the decay is similar, but the goodness-of-fit is worse which would imply that either this GRB is not associated with an underlying supernova or the underlying supernova is much fainter than the supernova associated with GRB980425. The galaxy in this case is fainter: V = 22.7 +/- 0.05, R = 22.25 +/- 0.05 and I = 22.15 +/- 0.05; and the OT plus the underlying supernova at a given time is brighter. Measurements of the brightnesses of the OT and the galaxy by late-time HST observation and ground-based observations can thus assess the presence of an underlying supernova.Comment: To appear in Ap

    Nucleosynthesis in ONeMg Novae: Models versus Observations to Constrain the Masses of ONeMg White Dwarfs and Their Envelopes

    Get PDF
    Nucleosynthesis in ONeMg novae has been investigated with the wide ranges of three parameters, i.e., the white dwarf mass, the envelope mass at ignition, and the initial composition. A quasi-analytic one-zone approach is used with an up-to-date nuclear reaction network. The nucleosynthesis results show correlation with the peak temperatures or the cooling timescales during outbursts. Among the combinations of white dwarf and envelope masses which give the same peak temperature, the explosion is more violent for a lower white dwarf mass owing to its smaller gravitational potential. Comparison of the nucleosynthesis results with observations implies that at least two-third of the white dwarf masses for the observed ONeMg novae are ≃1.1M⊙\simeq 1.1 M_\odot, which are significantly lower than estimated by previous hydrodynamic studies but consistent with the observations of V1974 Cyg. Moreover, the envelope masses derived from the comparison are ≳10−4M⊙\gtrsim 10^{-4} M_\odot, which are in good agreement with the ejecta masses estimated from observations but significantly higher than in previous hydrodynamic studies. With such a low mass white dwarf and a high mass envelope, the nova can produce interesting amounts of γ\gamma-ray emitters 7^7Be, 22^{22}Na, and 26^{26}Al. We suggest that V1974 Cyg has produced 22^{22}Na as high as the upper limit derived from the COMPTEL survey. In addition, a non-negligible part of the Galactic 26^{26}Al may originate from ONeMg novae, if not the major contributors. Both the future INTEGRAL survey for these γ\gamma-ray emitters and abundance estimates derived from ultraviolet, optical, and near infrared spectroscopies will impose a severe constraint on the current nova models.Comment: 21 pages, 23 figures, to appear in the Astrophysical Journal, Vol. 523, No.1, September 20, 1999; preprint with embedded images can be obtained from http://th.nao.ac.jp/~wanajo/journal/onenova.p

    The frequency of occurrence of novae hosting an ONe white dwarf

    Full text link
    In this paper, we revisit the problem of the determination of the frequency of occurrence of galactic nova outbursts which involve an oxygen-neon (ONe) white dwarf. The improvement with respect to previous work on the subject derives from the fact that we use the results that our evolutionary calculations provide for the final mass and for the chemical profiles of intermediate-to-massive primary components of close binary systems. In particular, the final evolutionary stages, such as the carbon burning phase, have been carefully followed for the whole range of masses of interest. The chemical profiles obtained with our evolutionary code are of interest in determining the chemical composition of the ejecta after being processed through the thermonuclear runaway, although such other factors as the efficiency of the mixing between the accreted material and that of the underlying white dwarf must also be considered. In our calculations of the frequency of occurrence of nova outbursts involving an ONe white dwarf, we also take into account the observational selection effects introduced by the different recurrence times of the outbursts and by the spatial distribution of novae. In spite of the very different evolutionary sequences, we find that approximately 1/3 of the novae observed in outburst should involve an oxygen-neon white dwarf, in agreement with previous theoretical estimates.Comment: 9 pages, 6 figures, accepted for publication in A&

    A Universal Decline Law of Classical Novae

    Get PDF
    We calculate many different nova light curves for a variety of white dwarf masses and chemical compositions, with the assumption that free-free emission from optically thin ejecta dominates the continuum flux. We show that all these light curves are homologous and a universal law can be derived by introducing a ``time scaling factor.'' The template light curve for the universal law has a slope of the flux, F \propto t^{-1.75}, in the middle part (from ~2 to ~6 mag below the optical maximum), but it declines more steeply, F \propto t^{-3.5}, in the later part (from ~6 to ~10 mag). This break on the light curve is due to a quick decrease in the wind mass-loss rate. The nova evolutions are approximately scaled by the time of break. Once the time of break is observationally determined, we can derive the various timescales of novae such as the period of a UV burst phase, the duration of optically thick wind phase, and the turnoff date of hydrogen shell-burning. We have applied our template light curve model to the three well-observed novae, V1500 Cyg, V1668 Cyg, and V1974 Cyg. Our theoretical light curves show excellent agreement with the optical y and infrared J, H, K light curves. The WD mass is estimated, from the light curve fitting, to be 1.15 M_\sun for V1500 Cyg, 0.95 ~M_\sun for V1668 Cyg, and 0.95-1.05 M_\sun for V1974 Cyg.Comment: To appear in ApJS, vol.167, 23 pages including 24 figure

    Swift X-Ray Observations of Classical Novae. II. The Super Soft Source sample

    Full text link
    The Swift GRB satellite is an excellent facility for studying novae. Its rapid response time and sensitive X-ray detector provides an unparalleled opportunity to investigate the previously poorly sampled evolution of novae in the X-ray regime. This paper presents Swift observations of 52 Galactic/Magellanic Cloud novae. We included the XRT (0.3-10 keV) X-ray instrument count rates and the UVOT (1700-8000 Angstroms) filter photometry. Also included in the analysis are the publicly available pointed observations of 10 additional novae the X-ray archives. This is the largest X-ray sample of Galactic/Magellanic Cloud novae yet assembled and consists of 26 novae with super soft X-ray emission, 19 from Swift observations. The data set shows that the faster novae have an early hard X-ray phase that is usually missing in slower novae. The Super Soft X-ray phase occurs earlier and does not last as long in fast novae compared to slower novae. All the Swift novae with sufficient observations show that novae are highly variable with rapid variability and different periodicities. In the majority of cases, nuclear burning ceases less than 3 years after the outburst begins. Previous relationships, such as the nuclear burning duration vs. t_2 or the expansion velocity of the eject and nuclear burning duration vs. the orbital period, are shown to be poorly correlated with the full sample indicating that additional factors beyond the white dwarf mass and binary separation play important roles in the evolution of a nova outburst. Finally, we confirm two optical phenomena that are correlated with strong, soft X-ray emission which can be used to further increase the efficiency of X-ray campaigns.Comment: Accepted to ApJ Supplements. Full data for Table 2 and Figure 17 available in the electronic edition. New version of the previously posted paper since the earlier version was all set in landscape mod

    Optical Imaging of Nova Shells and the Maximum Magnitude-Rate of Decline Relationship

    Get PDF
    An optical imaging study of recent 30 novae has been undertaken using both ground-based and space-based observations. Resolved shells have been detected around 9 objects in the ground-based data, while another four objects have shells detected by HST observations; for RW UMi, we fail to detect a shell which was observed five years earlier. Images in H-alpha, and when appropriate [O III], are shown, and finding charts for novae without shells are given if no published chart is available. Expansion parallaxes for all systems with shells are derived, and absolute magnitudes for a total of 28 objects are presented, along with a discussion of the maximum magnitude-rate of decline relation. We find that separate linear fits for fast and slow novae may be a better representation of the data than a single, global fit. At minimum, most novae have similar magnitudes as those of dwarf novae at maximum and novalike stars.Comment: 39 pages, 5 ps-figures, 13 jpg-figures. Accepted for publication in the Astronomical Journal (October 2000

    The secrets of T Pyxidis II. A recurrent nova that will not become a SN Ia

    Full text link
    By various methods, we obtained Ldisk_{disk} ∌\sim 70 L⊙_{\odot} and M˙\dot{M} ∌\sim1.1 ×\times 10−8^{-8} M⊙_{\odot}yr−1^{-1}. These values were about twice as high in the pre-1966-outburst epoch. This allowed the first direct estimate of the total mass accreted before outburst, Maccr_{accr}=M˙pre−OB\dot{M}_{pre-OB} ⋅Δ\cdot \Deltat, and its comparison with the critical ignition mass Mign_{ign}. We found Maccr_{accr} and Mign_{ign} to be in perfect agreement (with a value close to 5 ×\times 10−7^{-7}M⊙_{\odot}) for M1_1 ∌\sim 1.37 M⊙_{\odot}, which provides a confirmation of the thermonuclear runaway theory. The comparison of the observed parameters of the eruption phase, with the corresponding values in the grid of models by Yaron and collaborators, provides satisfactory agreement for values of M1_1 close to 1.35 M⊙_{\odot} and logM˙\dot{M} between -8.0 and -7.0, but the observed value of the decay time t3_3 is higher than expected. The long duration of the optically thick phase during the recorded outbursts of T Pyx, a spectroscopic behavior typical of classical novae, and the persistence of P Cyg profiles, constrains the ejected mass Mign_{ign} to within 10−5^{-5} - 10−4^{-4} M⊙_{\odot}. Therefore, T Pyx ejects far more material than it has accreted, and the mass of the white dwarf will not increase to the Chandrasekhar limit as generally believed in recurrent novae. A detailed study based on the UV data excludes the possibility that T Pyx belongs to the class of the supersoft X-ray sources, as has been postulated. XMM-NEWTON observations have revealed a weak, hard source and confirmed this interpretation

    International incidence of childhood cancer, 2001-10: A population-based registry study

    Get PDF
    corecore