584 research outputs found

    Learning flexible representations of stochastic processes on graphs

    Full text link
    Graph convolutional networks adapt the architecture of convolutional neural networks to learn rich representations of data supported on arbitrary graphs by replacing the convolution operations of convolutional neural networks with graph-dependent linear operations. However, these graph-dependent linear operations are developed for scalar functions supported on undirected graphs. We propose a class of linear operations for stochastic (time-varying) processes on directed (or undirected) graphs to be used in graph convolutional networks. We propose a parameterization of such linear operations using functional calculus to achieve arbitrarily low learning complexity. The proposed approach is shown to model richer behaviors and display greater flexibility in learning representations than product graph methods

    Semi-blind sparse channel estimation with constant modulus symbols

    Get PDF
    We propose two methods for the estimation of sparse communication channels. In the first method, we consider the problem of channel estimation based on training symbols, and formulate it as an optimization problem. In this formulation, we combine the objective of fidelity to the received data with a non-quadratic constraint reflecting the prior information about the sparsity of the channel. This approach leads to accurate channel estimates with much shorter training sequences than conventional methods. The second method we propose is aimed at taking advantage of any available training-based data, as well as any "blind" data based on unknown, constant modulus symbols. We propose a semi-blind optimization framework making use of these two types of data, and enforcing the sparsity of the channel, as well as the constant modulus property of the symbols. This approach improves upon the channel estimates based only on training sequences, and also produces accurate estimates for the unknown symbols

    Testing the Structure of a Gaussian Graphical Model with Reduced Transmissions in a Distributed Setting

    Full text link
    Testing a covariance matrix following a Gaussian graphical model (GGM) is considered in this paper based on observations made at a set of distributed sensors grouped into clusters. Ordered transmissions are proposed to achieve the same Bayes risk as the optimum centralized energy unconstrained approach but with fewer transmissions and a completely distributed approach. In this approach, we represent the Bayes optimum test statistic as a sum of local test statistics which can be calculated by only utilizing the observations available at one cluster. We select one sensor to be the cluster head (CH) to collect and summarize the observed data in each cluster and intercluster communications are assumed to be inexpensive. The CHs with more informative observations transmit their data to the fusion center (FC) first. By halting before all transmissions have taken place, transmissions can be saved without performance loss. It is shown that this ordering approach can guarantee a lower bound on the average number of transmissions saved for any given GGM and the lower bound can approach approximately half the number of clusters when the minimum eigenvalue of the covariance matrix under the alternative hypothesis in each cluster becomes sufficiently large

    Interactive Semantic Parsing for If-Then Recipes via Hierarchical Reinforcement Learning

    Full text link
    Given a text description, most existing semantic parsers synthesize a program in one shot. However, it is quite challenging to produce a correct program solely based on the description, which in reality is often ambiguous or incomplete. In this paper, we investigate interactive semantic parsing, where the agent can ask the user clarification questions to resolve ambiguities via a multi-turn dialogue, on an important type of programs called "If-Then recipes." We develop a hierarchical reinforcement learning (HRL) based agent that significantly improves the parsing performance with minimal questions to the user. Results under both simulation and human evaluation show that our agent substantially outperforms non-interactive semantic parsers and rule-based agents.Comment: 13 pages, 2 figures, accepted by AAAI 201

    Mining Entity Synonyms with Efficient Neural Set Generation

    Full text link
    Mining entity synonym sets (i.e., sets of terms referring to the same entity) is an important task for many entity-leveraging applications. Previous work either rank terms based on their similarity to a given query term, or treats the problem as a two-phase task (i.e., detecting synonymy pairs, followed by organizing these pairs into synonym sets). However, these approaches fail to model the holistic semantics of a set and suffer from the error propagation issue. Here we propose a new framework, named SynSetMine, that efficiently generates entity synonym sets from a given vocabulary, using example sets from external knowledge bases as distant supervision. SynSetMine consists of two novel modules: (1) a set-instance classifier that jointly learns how to represent a permutation invariant synonym set and whether to include a new instance (i.e., a term) into the set, and (2) a set generation algorithm that enumerates the vocabulary only once and applies the learned set-instance classifier to detect all entity synonym sets in it. Experiments on three real datasets from different domains demonstrate both effectiveness and efficiency of SynSetMine for mining entity synonym sets.Comment: AAAI 2019 camera-ready versio
    corecore