1,378 research outputs found
ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning
We present ANNz2, a new implementation of the public software for photometric redshift (photo-z) estimation of Collister & Lahav, which now includes generation of full probability distribution functions (PDFs). ANNz2 utilizes multiple machine learning methods, such as artificial neural networks and boosted decision/regression trees. The objective of the algorithm is to optimize the performance of the photo-z estimation, to properly derive the associated uncertainties, and to produce both single-value solutions and PDFs. In addition, estimators are made available, which mitigate possible problems of non-representative or incomplete spectroscopic training samples. ANNz2 has already been used as part of the first weak lensing analysis of the Dark Energy Survey, and is included in the experiment's first public data release. Here we illustrate the functionality of the code using data from the tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. The code is available for download at http://github.com/IftachSadeh/ANNZ
Experiment for Testing Special Relativity Theory
An experiment aimed at testing special relativity via a comparison of the
velocity of a non matter particle (annihilation photon) with the velocity of
the matter particle (Compton electron) produced by the second annihilation
photon from the decay Na-22(beta^+)Ne-22 is proposed.Comment: 7 pages, 1 figure, Report on the Conference of Nuclear Physics
Division of Russian Academy of Science "Physics of Fundamental Interactions",
ITEP, Moscow, November 26-30, 200
Spectrometric method to detect exoplanets as another test to verify the invariance of the velocity of light
Hypothetical influences of variability of light velocity due to the
parameters of the source of radiation, for the results of spectral measurements
of stars to search for exoplanets are considered. Accounting accelerations of
stars relative to the barycenter of the star - a planet (the planets) was
carried out. The dependence of the velocity of light from the barycentric
radial velocity and barycentric radial acceleration component of the star
should lead to a substantial increase (up to degree of magnitude) semi-major
axes of orbits detected candidate to extrasolar planets. Consequently, the
correct comparison of the results of spectral method with results of other
well-known modern methods of detecting extrasolar planets can regard the
results obtained in this paper as a reliable test for testing the invariance of
the velocity of light.Comment: 11 pages, 5 figure
Local and macroscopic tunneling spectroscopy of Y(1-x)CaxBa2Cu3O(7-d) films: evidence for a doping dependent is or idxy component in the order parameter
Tunneling spectroscopy of epitaxial (110) Y1-xCaxBa2Cu3O7-d films reveals a
doping dependent transition from pure d(x2-y2) to d(x2-y2)+is or d(x2-y2)+idxy
order parameter. The subdominant (is or idxy) component manifests itself in a
splitting of the zero bias conductance peak and the appearance of subgap
structures. The splitting is seen in the overdoped samples, increases
systematically with doping, and is found to be an inherent property of the
overdoped films. It was observed in both local tunnel junctions, using scanning
tunneling microscopy (STM), and in macroscopic planar junctions, for films
prepared by either RF sputtering or laser ablation. The STM measurements
exhibit fairly uniform splitting size in [110] oriented areas on the order of
10 nm2 but vary from area to area, indicating some doping inhomogeneity. U and
V-shaped gaps were also observed, with good correspondence to the local
faceting, a manifestation of the dominant d-wave order parameter
Gamma-ray Observations Under Bright Moonlight with VERITAS
Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive
photomultiplier tube (PMT) cameras. Exposure to high levels of background
illumination degrades the efficiency of and potentially destroys these
photo-detectors over time, so IACTs cannot be operated in the same
configuration in the presence of bright moonlight as under dark skies. Since
September 2012, observations have been carried out with the VERITAS IACTs under
bright moonlight (defined as about three times the night-sky-background (NSB)
of a dark extragalactic field, typically occurring when Moon illumination >
35%) in two observing modes, firstly by reducing the voltage applied to the
PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to
the cameras. This has allowed observations at up to about 30 times previous NSB
levels (around 80% Moon illumination), resulting in 30% more observing time
between the two modes over the course of a year. These additional observations
have already allowed for the detection of a flare from the 1ES 1727+502 and for
an observing program targeting a measurement of the cosmic-ray positron
fraction. We provide details of these new observing modes and their performance
relative to the standard VERITAS observations
Very-high-energy observations of the binaries V 404 Cyg and 4U 0115+634 during giant X-ray outbursts
Transient X-ray binaries produce major outbursts in which the X-ray flux can
increase over the quiescent level by factors as large as . The low-mass
X-ray binary V 404 Cyg and the high-mass system 4U 0115+634 underwent such
major outbursts in June and October 2015, respectively. We present here
observations at energies above hundreds of GeV with the VERITAS observatory
taken during some of the brightest X-ray activity ever observed from these
systems. No gamma-ray emission has been detected by VERITAS in 2.5 hours of
observations of the microquasar V 404 Cyg from 2015, June 20-21. The upper flux
limits derived from these observations on the gamma-ray flux above 200 GeV of F
cm s correspond to a tiny fraction (about
) of the Eddington luminosity of the system, in stark contrast to that
seen in the X-ray band. No gamma rays have been detected during observations of
4U 0115+634 in the period of major X-ray activity in October 2015. The flux
upper limit derived from our observations is F cm
s for gamma rays above 300 GeV, setting an upper limit on the ratio of
gamma-ray to X-ray luminosity of less than 4%.Comment: Accepted for publication in the Astrophysical Journa
Measurement of Cosmic-ray Electrons at TeV Energies by VERITAS
Cosmic-ray electrons and positrons (CREs) at GeV-TeV energies are a unique
probe of our local Galactic neighborhood. CREs lose energy rapidly via
synchrotron radiation and inverse-Compton scattering processes while
propagating within the Galaxy and these losses limit their propagation
distance. For electrons with TeV energies, the limit is on the order of a
kiloparsec. Within that distance there are only a few known astrophysical
objects capable of accelerating electrons to such high energies. It is also
possible that the CREs are the products of the annihilation or decay of heavy
dark matter (DM) particles. VERITAS, an array of imaging air Cherenkov
telescopes in southern Arizona, USA, is primarily utilized for gamma-ray
astronomy, but also simultaneously collects CREs during all observations. We
describe our methods of identifying CREs in VERITAS data and present an energy
spectrum, extending from 300 GeV to 5 TeV, obtained from approximately 300
hours of observations. A single power-law fit is ruled out in VERITAS data. We
find that the spectrum of CREs is consistent with a broken power law, with a
break energy at 710 40 140 GeV.Comment: 17 pages, 2 figures, accepted for publication in PR
Discovery of very-high-energy emission from RGB J2243+203 and derivation of its redshift upper limit
Very-high-energy (VHE; 100 GeV) gamma-ray emission from the blazar RGB
J2243+203 was discovered with the VERITAS Cherenkov telescope array, during the
period between 21 and 24 December 2014. The VERITAS energy spectrum from this
source can be fit by a power law with a photon index of , and a
flux normalization at 0.15 TeV of . The integrated
\textit{Fermi}-LAT flux from 1 GeV to 100 GeV during the VERITAS detection is
, which is an order of
magnitude larger than the four-year-averaged flux in the same energy range
reported in the 3FGL catalog, (). The detection with VERITAS
triggered observations in the X-ray band with the \textit{Swift}-XRT. However,
due to scheduling constraints \textit{Swift}-XRT observations were performed 67
hours after the VERITAS detection, not simultaneous with the VERITAS
observations. The observed X-ray energy spectrum between 2 keV and 10 keV can
be fitted with a power-law with a spectral index of , and the
integrated photon flux in the same energy band is . EBL model-dependent upper limits
of the blazar redshift have been derived. Depending on the EBL model used, the
upper limit varies in the range from z to z
Data Deluge in Astrophysics: Photometric Redshifts as a Template Use Case
Astronomy has entered the big data era and Machine Learning based methods
have found widespread use in a large variety of astronomical applications. This
is demonstrated by the recent huge increase in the number of publications
making use of this new approach. The usage of machine learning methods, however
is still far from trivial and many problems still need to be solved. Using the
evaluation of photometric redshifts as a case study, we outline the main
problems and some ongoing efforts to solve them.Comment: 13 pages, 3 figures, Springer's Communications in Computer and
Information Science (CCIS), Vol. 82
Very-High-Energy -Ray Observations of the Blazar 1ES 2344+514 with VERITAS
We present very-high-energy -ray observations of the BL Lac object
1ES 2344+514 taken by the Very Energetic Radiation Imaging Telescope Array
System (VERITAS) between 2007 and 2015. 1ES 2344+514 is detected with a
statistical significance above background of in hours
(livetime) of observations, making this the most comprehensive very-high-energy
study of 1ES 2344+514 to date. Using these observations the temporal properties
of 1ES 2344+514 are studied on short and long times scales. We fit a constant
flux model to nightly- and seasonally-binned light curves and apply a
fractional variability test, to determine the stability of the source on
different timescales. We reject the constant-flux model for the 2007-2008 and
2014-2015 nightly-binned light curves and for the long-term seasonally-binned
light curve at the level. The spectra of the time-averaged emission
before and after correction for attenuation by the extragalactic background
light are obtained. The observed time-averaged spectrum above 200 GeV is
satisfactorily fitted () by a power-law function with
index and extends to at least 8
TeV. The extragalactic-background-light-deabsorbed spectrum is adequately fit
() by a power-law function with index while an F-test indicates that the power-law with
exponential cutoff function provides a marginally-better fit ( =
) at the 2.1 level. The source location is found to be
consistent with the published radio location and its spatial extent is
consistent with a point source.Comment: 7 pages, 2 figures. Published in Monthly Notices of the Royal
Astronomical Societ
- …
