5 research outputs found

    Probing BoNT/A Protease Exosites: Implications for Inhibitor Design and Light Chain Longevity

    No full text
    Botulinum neurotoxin serotype A (BoNT/A) is one of the most lethal toxins known. Its extreme toxicity is due to its light chain (LC), a zinc protease that cleaves SNAP-25, a synaptosome-associated protein, leading to the inhibition of neuronal activity. Studies on BoNT/A LC have revealed that two regions, termed exosites, can play an important role in BoNT catalytic activity. A clear understanding of how these exosites influence neurotoxin catalytic activity would provide a critical framework for deciphering the mechanism of SNAP-25 cleavage and the design of inhibitors. Herein, based on the crystallographic structure of BoNT/A LC complexed with its substrate, we designed an α-exosite binding probe. Experiments with this unique probe demonstrated that α-exosite binding enhanced both catalytic activity and stability of the LC. These data help delineate why α-exosite binding is needed for SNAP-25 cleavage and also provide new insights into the extended lifetime observed for BoNT/A LC <i>in vivo</i>

    Onchocerca volvulus Molting Inhibitors Identified through Scaffold Hopping

    No full text
    The anthelmintic closantel has shown promise in abrogating the L3 molting of Onchocerca volvulus, the causative agent of the infectious disease onchocerciasis. In our search for alternative scaffolds, we utilized a fragment replacement/modification approach to generate novel chemotypes with improved chitinase inhibitory properties. Further evaluation of the compounds unveiled the potential of urea-tropolones as potent inhibitors of <i>O. volvulus</i> L3 molting

    Targeting Botulinum A Cellular Toxicity: A Prodrug Approach

    No full text
    The botulinum neurotoxin light chain (LC) protease has become an important therapeutic target for postexposure treatment of botulism. Hydroxamic acid based small molecules have proven to be potent inhibitors of LC/A with nanomolar <i>K</i><sub>i</sub> values, yet they lack cellular activity conceivably due to low membrane permeability. To overcome this potential liability, we investigated two prodrug strategies, 1,4,2-dioxazole and carbamate, based on our 1-adamantylacetohydroxamic acid scaffold. The 1,4,2-dioxazole prodrug did not demonstrate cellular activity, however, carbamates exhibited cellular potency with the most active compound displaying an EC<sub>50</sub> value of 20 μM. Cellular trafficking studies were conducted using a “fluorescently silent” prodrug that remained in this state until cellular uptake was complete, which allowed for visualization of the drug’s release inside neuronal cells. In sum, this research sets the stage for future studies leveraging the specific targeting and delivery of these prodrugs, as well as other antibotulinum agents, into neuronal cells

    C‑Terminus of Botulinum A Protease Has Profound and Unanticipated Kinetic Consequences upon the Catalytic Cleft

    No full text
    Botulinum neurotoxins (BoNTs) are among the most deadly poisons known, though ironically, they also are of great therapeutic utility. A number of research programs have been initiated to discover small molecule inhibitors of BoNTs metalloprotease activity. Many, though not all, of these programs have screened against a truncated and more stable form of the enzyme, that possesses comparable catalytic properties to the full length enzyme. Interestingly, several classes of inhibitors, notably the hydroxamates, display a large shift in potency between the two enzyme forms. In this report we compare the kinetics of active-site, α-exosite and β-exosite inhibitors versus truncated and full length enzyme. Molecular dynamics simulations conducted with the truncated and homology models of the full length BoNT LC/A indicate the flexibility of the C-terminus of the full length enzyme is responsible for the potency shifts of active-site proximally binding inhibitors while distal binding (α-exosite) inhibitors remain equipotent

    Lipidated Peptide Dendrimers Killing Multidrug-Resistant Bacteria

    Get PDF
    New antibiotics are urgently needed to address multidrug-resistant (MDR) bacteria. Herein we report that second-generation (G2) peptide dendrimers bearing a fatty acid chain at the dendrimer core efficiently kill Gram-negative bacteria including <i>Pseudomonas aeruginosa</i> and <i>Acinetobacter baumannii</i>, two of the most problematic MDR bacteria worldwide. Our most active dendrimer <b>TNS18</b> is also active against Gram-positive methicillin-resistant <i>Staphylococcus aureus</i>. Based on circular dichroism and molecular dynamics studies, we hypothesize that <b>TNS18</b> adopts a hydrophobically collapsed conformation in water with the fatty acid chain backfolded onto the peptide dendrimer branches and that the dendrimer unfolds in contact with the membrane to expose its lipid chain and hydrophobic residues, thereby facilitating membrane disruption leading to rapid bacterial cell death. Dendrimer <b>TNS18</b> shows promising in vivo activity against MDR clinical isolates of <i>A. baumannii</i> and <i>Escherichia coli</i>, suggesting that lipidated peptide dendrimers might become a new class of antibacterial agents
    corecore