21 research outputs found

    Growth supression of plant pathogenic fungi using bryophite extracts

    Get PDF
    Chemicals are often used in attempts to control diseases caused by plant pathogenic fungi during food production. However, chemicals can have adverse effects not just on food, but they also remain active for a long time within ecosystems, and thus are not environmentally friendly. Therefore, development of bio-treatment and avoiding use of chemicals are urgently needed. With the aim of studying and developing new environmentally-friendly treatments, we tested extracts from selected bryophyte species (Porella platyphylla, Cinclidotus fontinaloides and Anomodon viticulosus) on five plant pathogenic fungi under controlled conditions. The fungi (Botryosphaeria dothidea, Phomopsis viticola, Calosphaeria sp., Colletotrichum acutatum and Monilinia laxa) were selected based on common diseases they cause on fruits and grapevine. They were isolated in cultures and treated with bryophyte extracts. Bryophyte extracts were shown to be effective in suppression of certain plant pathogenic fungi growth and to have a huge potential in development of novel biotechnological treatments and biofungicides. The best results were achieved in inhibition of B. dothidea, P. viticola and Calosphaeria sp

    Effects of abscisic acid (ABA) on the development of selected bryophyte species

    No full text
    The effects of the universal signal molecule, abscisic acid (ABA), with limited knowledge functions in non-tracheophyte have been studied in three selected bryophyte species: two mosses, Physcomitrella patens and Atrichum undulatum, and one liverwort, Marchantia polymorpha. While vegetative development as well as total chlorophyll and carotenoid contents tended to decrease in the three bryophyte species with increasing exogenous ABA concentration, the effect on total biomass showed less clear patterns in the bryophytes tested. These differences in response to ABA likely reflect different adaptations of these three species to conditions in situ.JGS - M was supported by a Spanish Ministry of Science and Innovation “Ramón y Cajal” postdoctoral contract.Peer Reviewe

    Lamina Cell Shape and Cell Wall Thickness Are Useful Indicators for Metal Tolerance—An Example in Bryophytes

    No full text
    Bryophytes are widely used to monitor air quality. Due to the lack of a cuticle, their cells can be compared to the roots of crop plants. This study aimed to test a hypothetical relation between metal tolerance and cell shape in biomonitoring mosses (Hypnum cupressiforme, Pleurozium schreberi, Pseudoscleropodium purum) and metal sensitive species (Physcomitrium patens, Plagiomnium affine). The tolerance experiments were conducted on leafy gametophytes exposed to solutions of ZnSO4, ZnCl2, and FeSO4 in graded concentrations of 1 M to 10−8 M. Plasmolysis in D-mannitol (0.8 M) was used as a viability measure. The selected species differed significantly in lamina cell shape, cell wall thickness, and metal tolerance. In those tested mosses, the lamina cell shape correlated significantly with the heavy metal tolerance, and we found differences for ZnSO4 and ZnCl2. Biomonitoring species with long and thin cells proved more tolerant than species with isodiametric cells. For the latter, “death zones” at intermediate metal concentrations were found upon exposure to ZnSO4. Species with a greater tolerance towards FeSO4 and ZnSO4 had thicker cell walls than less tolerant species. Hence, cell shape as a protoplast-to-wall ratio, in combination with cell wall thickness, could be a good marker for metal tolerance

    Lamina Cell Shape and Cell Wall Thickness Are Useful Indicators for Metal Tolerance—An Example in Bryophytes

    No full text
    Bryophytes are widely used to monitor air quality. Due to the lack of a cuticle, their cells can be compared to the roots of crop plants. This study aimed to test a hypothetical relation between metal tolerance and cell shape in biomonitoring mosses (Hypnum cupressiforme, Pleurozium schreberi, Pseudoscleropodium purum) and metal sensitive species (Physcomitrium patens, Plagiomnium affine). The tolerance experiments were conducted on leafy gametophytes exposed to solutions of ZnSO4, ZnCl2, and FeSO4 in graded concentrations of 1 M to 10−8 M. Plasmolysis in D-mannitol (0.8 M) was used as a viability measure. The selected species differed significantly in lamina cell shape, cell wall thickness, and metal tolerance. In those tested mosses, the lamina cell shape correlated significantly with the heavy metal tolerance, and we found differences for ZnSO4 and ZnCl2. Biomonitoring species with long and thin cells proved more tolerant than species with isodiametric cells. For the latter, “death zones” at intermediate metal concentrations were found upon exposure to ZnSO4. Species with a greater tolerance towards FeSO4 and ZnSO4 had thicker cell walls than less tolerant species. Hence, cell shape as a protoplast-to-wall ratio, in combination with cell wall thickness, could be a good marker for metal tolerance

    Seasonal changes in photosynthetic rate and pigment content in two populations of the monotypic Balkan serpentine endemic Halacsya sendtneri

    No full text
    Halacsya sendtneri (Boiss.) Dorfl. is an obligate serpentine palaeoendemic of the Balkan Peninsula. It is able to maintain a favourable magnesium:calcium (Mg:Ca) ratio throughout its root and shoot, and grow in serpentine habitats with different microclimate conditions. Seasonal variation of leaf chlorophyll and carotenoid contents showed a steep decline right after the spring period, which was most probably caused by the drought imposed on the plants on the shallow serpentine soil. However, the in situ photosynthetic rate remained stable throughout the spring and summer period. Prolonged photosynthetic activity enables this species an investment into root development and sustainable survival in the harsh soils of the habitats it occupies

    Physiological Tolerance Mechanisms of Serpentine Tolerant Plants from Serbia

    No full text
    Serpentine (ultramafic) soils are extremely stressful environments for plant growth due to macronutrient deficiency (N, P, K, Ca), macronutrient toxicity (Mg; extremely high Mg:Ca ratio), and micronutrient toxicity (Mn, Fe, Ni, Cu, Zn), as well as toxicity of other heavy metals (Al, Cr, Co). Serpentine soils are also often shallow, rocky, and susceptible to drought. As a result of extreme adverse physical and chemical conditions, serpentine soils support a high proportion of endemic plant species that are adapted to their harsh environment. We analysed root, stem, and leaf tissue element concentrations (Ca, Mg, Al, Mn, Fe, Ni, Cu, and Zn) of Halacsya sendtneri (Boraginaceae; strict serpentine endemic), Cheilanthes marantae (Pteridaceac; broad serpentine endemic/strong indicator), and Seseli rigidum (Apiaccac; weak serpentine indicator/indifferent) growing on serpentine and limestone in Serbia. Element bioaccumulation factor was calculated as the ratio of plant tissue clement concentration to soil plant-available element concentration. Tissue concentrations of Ca and Mg for H. sendtneri and S. rigidum indicate that the species selectively uptake and translocatc Ca to leaves, relative to Mg, to maintain adequate tissue Mg:Ca ratio. C. marantae did not exhibit selective Ca uptake or translocation, but did exhibit Mg sequestration in roots. Heavy metal exclusion and sequestration were the primary physiological tolerance mechanisms conveying serpentine tolerance in the three species. S. rigidum exhibited divergence into serpentine tolerant and limestone tolerant ecotypes, presenting a useful model species for further studies of physiological adaptation to chemically extreme soils

    Physiological Tolerance Mechanisms of Serpentine Tolerant Plants from Serbia

    No full text
    Serpentine (ultramafic) soils are extremely stressful environments for plant growth due to macronutrient deficiency (N, P, K, Ca), macronutrient toxicity (Mg; extremely high Mg:Ca ratio), and micronutrient toxicity (Mn, Fe, Ni, Cu, Zn), as well as toxicity of other heavy metals (Al, Cr, Co). Serpentine soils are also often shallow, rocky, and susceptible to drought. As a result of extreme adverse physical and chemical conditions, serpentine soils support a high proportion of endemic plant species that are adapted to their harsh environment. We analysed root, stem, and leaf tissue element concentrations (Ca, Mg, Al, Mn, Fe, Ni, Cu, and Zn) of Halacsya sendtneri (Boraginaceae; strict serpentine endemic), Cheilanthes marantae (Pteridaceac; broad serpentine endemic/strong indicator), and Seseli rigidum (Apiaccac; weak serpentine indicator/indifferent) growing on serpentine and limestone in Serbia. Element bioaccumulation factor was calculated as the ratio of plant tissue clement concentration to soil plant-available element concentration. Tissue concentrations of Ca and Mg for H. sendtneri and S. rigidum indicate that the species selectively uptake and translocatc Ca to leaves, relative to Mg, to maintain adequate tissue Mg:Ca ratio. C. marantae did not exhibit selective Ca uptake or translocation, but did exhibit Mg sequestration in roots. Heavy metal exclusion and sequestration were the primary physiological tolerance mechanisms conveying serpentine tolerance in the three species. S. rigidum exhibited divergence into serpentine tolerant and limestone tolerant ecotypes, presenting a useful model species for further studies of physiological adaptation to chemically extreme soils

    Physiological Tolerance Mechanisms of Serpentine Tolerant Plants from Serbia

    No full text
    Serpentine (ultramafic) soils are extremely stressful environments for plant growth due to macronutrient deficiency (N, P, K, Ca), macronutrient toxicity (Mg; extremely high Mg:Ca ratio), and micronutrient toxicity (Mn, Fe, Ni, Cu, Zn), as well as toxicity of other heavy metals (Al, Cr, Co). Serpentine soils are also often shallow, rocky, and susceptible to drought. As a result of extreme adverse physical and chemical conditions, serpentine soils support a high proportion of endemic plant species that are adapted to their harsh environment. We analysed root, stem, and leaf tissue element concentrations (Ca, Mg, Al, Mn, Fe, Ni, Cu, and Zn) of Halacsya sendtneri (Boraginaceae; strict serpentine endemic), Cheilanthes marantae (Pteridaceac; broad serpentine endemic/strong indicator), and Seseli rigidum (Apiaccac; weak serpentine indicator/indifferent) growing on serpentine and limestone in Serbia. Element bioaccumulation factor was calculated as the ratio of plant tissue clement concentration to soil plant-available element concentration. Tissue concentrations of Ca and Mg for H. sendtneri and S. rigidum indicate that the species selectively uptake and translocatc Ca to leaves, relative to Mg, to maintain adequate tissue Mg:Ca ratio. C. marantae did not exhibit selective Ca uptake or translocation, but did exhibit Mg sequestration in roots. Heavy metal exclusion and sequestration were the primary physiological tolerance mechanisms conveying serpentine tolerance in the three species. S. rigidum exhibited divergence into serpentine tolerant and limestone tolerant ecotypes, presenting a useful model species for further studies of physiological adaptation to chemically extreme soils

    Bryophytes - an emerging source for herbal remedies and chemical production

    No full text
    AbstractBryophytes (including mosses, liverworts and hornworts) are a heterogeneous group of terrestrial plants, which comprise over 24,000 species worldwide. Given the various biological activities reported from bryophytes, they have a huge commercial potential. Due to their minute size and rather small biomass in various ecosystems, bryophytes are a seldom part of ethnomedicine and rarely subject to medicinal and chemical analyses. Still, hundreds of novel natural products have been isolated from bryophytes. Bryophytes have been shown to contain numerous potentially useful natural products, including polysaccharides, lipids, rare amino acids, terpenoids, phenylpropanoids, quinones and many other specialized metabolites. Additionally, different bryophyte extracts and isolated compounds have shown antimicrobial, antiviral, cytotoxic, nematocidal, insecticidal, effects on smooth and non-striated muscles, weight loss, plant growth regulators and allelopathic activities. Bryophytes also cause allergies and contact dermatitis. All these effects highlight bryophytes as potential source for herbal remedies and production of chemicals to be used in various products.</jats:p
    corecore