258 research outputs found

    Dissimilarity-based representation for radiomics applications

    Full text link
    Radiomics is a term which refers to the analysis of the large amount of quantitative tumor features extracted from medical images to find useful predictive, diagnostic or prognostic information. Many recent studies have proved that radiomics can offer a lot of useful information that physicians cannot extract from the medical images and can be associated with other information like gene or protein data. However, most of the classification studies in radiomics report the use of feature selection methods without identifying the machine learning challenges behind radiomics. In this paper, we first show that the radiomics problem should be viewed as an high dimensional, low sample size, multi view learning problem, then we compare different solutions proposed in multi view learning for classifying radiomics data. Our experiments, conducted on several real world multi view datasets, show that the intermediate integration methods work significantly better than filter and embedded feature selection methods commonly used in radiomics.Comment: conference, 6 pages, 2 figure

    Offline Handwritten Signature Verification - Literature Review

    Full text link
    The area of Handwritten Signature Verification has been broadly researched in the last decades, but remains an open research problem. The objective of signature verification systems is to discriminate if a given signature is genuine (produced by the claimed individual), or a forgery (produced by an impostor). This has demonstrated to be a challenging task, in particular in the offline (static) scenario, that uses images of scanned signatures, where the dynamic information about the signing process is not available. Many advancements have been proposed in the literature in the last 5-10 years, most notably the application of Deep Learning methods to learn feature representations from signature images. In this paper, we present how the problem has been handled in the past few decades, analyze the recent advancements in the field, and the potential directions for future research.Comment: Accepted to the International Conference on Image Processing Theory, Tools and Applications (IPTA 2017
    • …