176 research outputs found
Recommended from our members
Visual support for ontology learning: an experience report
Ontology learning methods aim to automate ontology
construction. They are complex methods involving several
elements such as documents, terms and concepts. During the development of an ontology learning method, as well as during its deployment, several situations occur where
understanding the relations between these elements is crucial. Our hypothesis is that visual techniques can be used to aid this understanding. To support this claim, we present a set of such complex situations and describe the visual solutions that we developed to support them
Recommended from our members
Extracting ontologies from software documentation: a semi-automatic method and its evaluation
Rich and generic ontologies about web service functionalities are a prerequisite for performing complex reasoning tasks with web service descriptions. However, their acquisition is timeconsuming and conditioned by the small number of web services available in certain domains. As a solution, we describe a semiautomatic method to extract such ontologies from software documentation,
motivated by the observation that web services reflect the
functionality of their underlying implementation. Further, we report on fine-tuning the extraction process by using a multi-stage evaluation method
From software APIs to web service ontologies: a semi-automatic extraction method
Successful employment of semantic web services depends on
the availability of high quality ontologies to describe the domains of these services. As always, building such ontologies is difficult and costly, thus hampering web service deployment. Our hypothesis is that since the functionality offered by a web service is reflected by the underlying software, domain ontologies could be built by analyzing the documentation of that software. We verify this hypothesis in the domain of RDF ontology storage tools.We implemented and fine-tuned a semi-automatic method to extract domain ontologies from software documentation. The quality of the extracted ontologies was verified against a high quality hand-built ontology of the same domain. Despite the low linguistic quality of the corpus, our method allows extracting a considerable amount
of information for a domain ontology
Towards improving web service repositories through semantic web techniques
The success of the Web services technology has brought topicsas software reuse and discovery once again on the agenda of software engineers. While there are several efforts towards automating Web service discovery and composition, many developers still search for services
via online Web service repositories and then combine them manually. However, from our analysis of these repositories, it yields that, unlike traditional software libraries, they rely on little metadata to support
service discovery. We believe that the major cause is the difficulty of automatically deriving metadata that would describe rapidly changing Web service collections. In this paper, we discuss the major shortcomings of state of the art Web service repositories and, as a solution, we
report on ongoing work and ideas on how to use techniques developed in the context of the Semantic Web (ontology learning, mapping, metadata based presentation) to improve the current situation
Language technologies and the evolution of the semantic web
The availability of huge amounts of semantic markup on the Web promises to enable a quantum leap in the level of support available to Web users for locating, aggregating, sharing, interpreting and customizing information. While we cannot claim that a large scale Semantic Web already exists, a number of applications have been produced, which generate and exploit semantic markup, to provide advanced search and querying functionalities, and to allow the visualization and management of heterogeneous, distributed data. While these tools provide evidence of the feasibility and tremendous potential value of the enterprise, they all suffer from major limitations, to do primarily with the limited degree of scale and heterogeneity of the semantic data they use. Nevertheless, we argue that we are at a key point in the brief history of the Semantic Web and that the very latest demonstrators already give us a glimpse of what future applications will look like. In this paper, we describe the already visible effects of these changes by analyzing the evolution of Semantic Web tools from smart databases towards applications that harness collective intelligence. We also point out that language technology plays an important role in making this evolution sustainable and we highlight the need for improved support, especially in the area of large-scale linguistic resources
An Experience report on using DAML-S
Though DAML-S is growing into a de facto standard for semantic webservice markup, we have only found few complete service descriptions and even less papers discussing technical issues about the markup process. We
addressed this lack by (1) reporting on our experiences in describing a set of services, (2) concluding several limitations of the latest DAML-S version (v0.7) and (3) making our work accessible to the research community1
Bridging the gap between folksonomies and the semantic web: an experience report
Abstract. While folksonomies allow tagging of similar resources with a variety of tags, their content retrieval mechanisms are severely hampered by being agnostic to the relations that exist between these tags. To overcome this limitation, several methods have been proposed to find groups of implicitly inter-related tags. We believe that content retrieval can be further improved by making the relations between tags explicit. In this paper we propose the semantic enrichment of folksonomy tags with explicit relations by harvesting the Semantic Web, i.e., dynamically selecting and combining relevant bits of knowledge from online ontologies. Our experimental results show that, while semantic enrichment needs to be aware of the particular characteristics of folksonomies and the Semantic Web, it is beneficial for both.
Ontology selection: ontology evaluation on the real Semantic Web
The increasing number of ontologies on the Web and the appearance of large scale ontology repositories has brought the topic of ontology selection in the focus of the semantic web research agenda. Our view is that ontology evaluation is core to ontology selection and that, because ontology selection is performed in an open Web environment, it brings new challenges to ontology evaluation.
Unfortunately, current research regards ontology selection and evaluation as two separate topics. Our goal in this paper is to explore how these two tasks relate. In particular, we are interested to get a better understanding of the ontology selection task and filter out the challenges that it brings to ontology evaluation. We discuss requirements posed by the open Web environment on ontology selection, we overview existing work on selection and point out future directions. Our major conclusion is that, even if selection methods still need further development, they have already brought novel approaches to ontology evaluatio
Recommended from our members
Using background knowledge for ontology evolution
One of the current bottlenecks for automating ontology evolution is resolving the right links between newly arising information and the existing knowledge in the ontology. Most of existing approaches mainly rely on the user when it comes to capturing and representing new knowledge. Our ontology evolution framework intends to reduce or even eliminate user input through the use of background knowledge. In this paper, we show how various sources of background knowledge could be exploited for relation discovery. We perform a relation discovery experiment focusing on the use of WordNet and Semantic Web ontologies as sources of background knowledge. We back our experiment with a thorough analysis that highlights various issues on how to improve and validate relation discovery in the future, which will directly improve the task of automatically performing ontology changes during evolution
Recommended from our members
Investigating the use of background knowledge for assessing the relevance of statements to an ontology in ontology evolution
The tasks of learning and enriching ontologies with new concepts and relations have attracted a lot of attention in the research community, leading to a number of tools facilitating the process of building and updating ontologies. These tools often discover new elements of information to be included in the considered ontology from external data sources such as text documents or databases, transforming these elements into ontology compatible statements or axioms. While some techniques are used to make sure that statements to be added are compatible with the ontology (e.g. through conflict detection), such tools generally pay little attention to the relevance of the statement in question. It is either assumed that any statement extracted from a data source is relevant, or that the user will assess whether a statement adds value to the ontology. In this paper, we investigate the use of background knowledge about the context where statements appear to assess their relevance. We devise a methodology to extract such a context from ontologies available online, to map it to the considered ontology and to visualize this mapping in a way that allows to study the intersection and complementarity of the two sources of knowledge. By applying this methodology on several examples, we identified an initial set of patterns giving strong indications concerning the relevance of a statement, as well as interesting issues to be considered when applying such techniques
- …