195 research outputs found

    Bits About the Channel: Multi-round Protocols for Two-way Fading Channels

    Full text link
    Most communication systems use some form of feedback, often related to channel state information. In this paper, we study diversity multiplexing tradeoff for both FDD and TDD systems, when both receiver and transmitter knowledge about the channel is noisy and potentially mismatched. For FDD systems, we first extend the achievable tradeoff region for 1.5 rounds of message passing to get higher diversity compared to the best known scheme, in the regime of higher multiplexing gains. We then break the mold of all current channel state based protocols by using multiple rounds of conferencing to extract more bits about the actual channel. This iterative refinement of the channel increases the diversity order with every round of communication. The protocols are on-demand in nature, using high powers for training and feedback only when the channel is in poor states. The key result is that the diversity multiplexing tradeoff with perfect training and K levels of perfect feedback can be achieved, even when there are errors in training the receiver and errors in the feedback link, with a multi-round protocol which has K rounds of training and K-1 rounds of binary feedback. The above result can be viewed as a generalization of Zheng and Tse, and Aggarwal and Sabharwal, where the result was shown to hold for K=1 and K=2 respectively. For TDD systems, we also develop new achievable strategies with multiple rounds of communication between the transmitter and the receiver, which use the reciprocity of the forward and the feedback channel. The multi-round TDD protocol achieves a diversity-multiplexing tradeoff which uniformly dominates its FDD counterparts, where no channel reciprocity is available.Comment: Submitted to IEEE Transactions on Information Theor

    A Signal-Space Analysis of Spatial Self-Interference Isolation for Full-Duplex Wireless

    Full text link
    The challenge to in-band full-duplex wireless communication is managing self-interference. Many designs have employed spatial isolation mechanisms, such as shielding or multi-antenna beamforming, to isolate the self-interference wave from the receiver. Such spatial isolation methods are effective, but by confining the transmit and receive signals to a subset of the available space, the full spatial resources of the channel be under-utilized, expending a cost that may nullify the net benefit of operating in full-duplex mode. In this paper we leverage an antenna-theory-based channel model to analyze the spatial degrees of freedom available to a full-duplex capable base station, and observe that whether or not spatial isolation out-performs time-division (i.e. half-duplex) depends heavily on the geometric distribution of scatterers. Unless the angular spread of the objects that scatter to the intended users is overlapped by the spread of objects that backscatter to the base station, then spatial isolation outperforms time division, otherwise time division may be optimal.Comment: To Appear at 2014 International Symposium on Information Theor

    Distributed Full-duplex via Wireless Side Channels: Bounds and Protocols

    Full text link
    In this paper, we study a three-node full-duplex network, where a base station is engaged in simultaneous up- and downlink communication in the same frequency band with two half-duplex mobile nodes. To reduce the impact of inter- node interference between the two mobile nodes on the system capacity, we study how an orthogonal side-channel between the two mobile nodes can be leveraged to achieve full-duplex-like multiplexing gains. We propose and characterize the achievable rates of four distributed full-duplex schemes, labeled bin-and- cancel, compress-and-cancel, estimate-and-cancel and decode- and-cancel. Of the four, bin-and-cancel is shown to achieve within 1 bit/s/Hz of the capacity region for all values of channel parameters. In contrast, the other three schemes achieve the near-optimal performance only in certain regimes of channel values. Asymptotic multiplexing gains of all proposed schemes are derived to show that the side-channel is extremely effective in regimes where inter-node interference has the highest impact.Comment: Published in IEEE Transactions on Wireless Communications, August 201