1,642 research outputs found
Low temperature properties of holographic condensates
In the current work we study various models of holographic superconductors at
low temperature. Generically the zero temperature limit of those models are
solitonic solution with a zero sized horizon. Here we generalized simple
version of those zero temperature solutions to small but non-zero temperature
T. We confine ourselves to cases where near horizon geometry is AdS^4. At a
non-zero temperature a small horizon would form deep inside this AdS^4 which
does not disturb the UV physics. The resulting geometry may be matched with the
zero temperature solution at an intermediate length scale. We understand this
matching from separation of scales by setting up a perturbative expansion in
gauge potential. We have a better analytic control in abelian case and
quantities may be expressed in terms of hypergeometric function. From this we
calculate low temperature behavior of various quatities like entropy, charge
density and specific heat etc. We also calculate various energy gaps associated
with p-wave holographic superconductor to understand the underlying pairing
mechanism. The result deviates significantly from the corresponding weak
coupling BCS counterpart.Comment: 17 Page
Pointlike probes of superstring-theoretic superfluids
In analogy with an experimental setup used in liquid helium, we use a
pointlike probe to study superfluids which have a gravity dual. In the gravity
description, the probe is represented by a hanging string. We demonstrate that
there is a critical velocity below which the probe particle feels neither drag
nor stochastic forces. Above this critical velocity, there is power-law scaling
for the drag force, and the stochastic forces are characterized by a finite,
velocity-dependent temperature. This temperature participates in two simple and
general relations between the drag force and stochastic forces. The formula we
derive for the critical velocity indicates that the low-energy excitations are
massless, and they demonstrate the power of stringy methods in describing
strongly coupled superfluids.Comment: 17 pages, 2 figures, added a figure, a reference, and moved material
to an appendi
Quantum Critical Superfluid Flows and Anisotropic Domain Walls
We construct charged anisotropic AdS domain walls as solutions of a
consistent truncation of type IIB string theory. These are a one-parameter
family of solutions that flow to an AdS fixed point in the IR, exhibiting
emergent conformal invariance and quantum criticality. They represent the
zero-temperature limit of the holographic superfluids at finite superfluid
velocity constructed in arXiv:1010.5777. We show that these domain walls exist
only for velocities less than a critical value, agreeing in detail with a
conjecture made there. We also comment about the IR limits of flows with
velocities higher than this critical value, and point out an intriguing
similarity between the phase diagrams of holographic superfluid flows and those
of ordinary superconductors with imbalanced chemical potential.Comment: 11 pages, 3 figures. V2: Very minor corrections. JHEP versio
p-wave Holographic Superconductors and five-dimensional gauged Supergravity
We explore five-dimensional and
SO(6) gauged supergravities as frameworks for condensed matter applications.
These theories contain charged (dilatonic) black holes and 2-forms which have
non-trivial quantum numbers with respect to U(1) subgroups of SO(6). A question
of interest is whether they also contain black holes with two-form hair with
the required asymptotic to give rise to holographic superconductivity. We first
consider the case, which contains a complex two-form potential
which has U(1) charge . We find that a slight
generalization, where the two-form potential has an arbitrary charge , leads
to a five-dimensional model that exhibits second-order superconducting
transitions of p-wave type where the role of order parameter is played by
, provided . We identify the operator that condenses
in the dual CFT, which is closely related to Super Yang-Mills
theory with chemical potentials. Similar phase transitions between R-charged
black holes and black holes with 2-form hair are found in a generalized version
of the gauged supergravity Lagrangian where the two-forms have
charge .Comment: 35 pages, 14 figure
Fermion correlators in non-abelian holographic superconductors
We consider fermion correlators in non-abelian holographic superconductors.
The spectral function of the fermions exhibits several interesting features
such as support in displaced Dirac cones and an asymmetric distribution of
normal modes. These features are compared to similar ones observed in angle
resolved photoemission experiments on high T_c superconductors. Along the way
we elucidate some properties of p-wave superconductors in AdS_4 and discuss the
construction of SO(4) superconductors.Comment: 49 pages, 11 figure
Type IIB Holographic Superfluid Flows
We construct fully backreacted holographic superfluid flow solutions in a
five-dimensional theory that arises as a consistent truncation of low energy
type IIB string theory. We construct a black hole with scalar and vector hair
in this theory, and study the phase diagram. As expected, the superfluid phase
ceases to exist for high enough superfluid velocity, but we show that the phase
transition between normal and superfluid phases is always second order. We also
analyze the zero temperature limit of these solutions. Interestingly, we find
evidence that the emergent IR conformal symmetry of the zero-temperature domain
wall is broken at high enough velocity.Comment: v3: Published version. Figures 5 and 6 corrected. 24 pages, 7 figure
Quantum Criticality and Holographic Superconductors in M-theory
We present a consistent Kaluza-Klein truncation of D=11 supergravity on an
arbitrary seven-dimensional Sasaki-Einstein space (SE_7) to a D=4 theory
containing a metric, a gauge-field, a complex scalar field and a real scalar
field. We use this D=4 theory to construct various black hole solutions that
describe the thermodynamics of the d=3 CFTs dual to skew-whiffed AdS_4 X SE_7
solutions. We show that these CFTs have a rich phase diagram, including
holographic superconductivity with, generically, broken parity and time
reversal invariance. At zero temperature the superconducting solutions are
charged domain walls with a universal emergent conformal symmetry in the far
infrared.Comment: 52 pages, 16 figures, 3 appendices; minor changes, version to be
published in JHE
Holographic Superconductors
A holographic model of superconductors based on the action proposed by
Benini, Herzog, and Yarom [arXiv:1006.0731] is studied. This model has a
charged spin two field in an AdS black hole spacetime. Working in the probe
limit, the normalizable solution of the spin two field in the bulk gives rise
to a superconducting order parameter at the boundary of the AdS. We
calculate the fermion spectral function in this\ superconducting background and
confirm the existence of fermi arcs for non-vanishing Majorana couplings. By
changing the relative strength of the and condensations, the
position and the size of the fermi arcs are changed. When , the
spectrum becomes isotropic and the spectral function is s-wave like. By
changing the fermion mass, the fermi momentum is changed. We also calculate the
conductivity for these holographic superconductors where time reversal
symmetry has been broken spontaneously. A non-vanishing Hall conductivity is
obtained even without an external magnetic field.Comment: 24 pages,17 figures, Add more discussions on hall conductivity, two
new figures, Matched with published versio
Holographic Superconductors in a Cohesive Phase
We consider a four-dimensional N=2 gauged supergravity coupled to matter
fields. The model is obtained by a U(1) gauging of a charged hypermultiplet and
therefore it is suitable for the study of holographic superconductivity. The
potential has a topologically flat direction and the parameter running on this
"moduli space" labels the new superconducting black holes. Zero temperature
solutions are constructed and the phase diagram of the theory is studied. The
model has rich dynamics. The retrograde condensate is just a special case in
the new class of black holes. The calculation of the entanglement entropy makes
manifest the properties of a generic solution and the superconductor at zero
temperature is in a confined cohesive phase. The parameter running on the
topologically flat direction is a marginal coupling in the dual field theory.
We prove this statement by considering the way double trace deformations are
treated in the AdS/CFT correspondence. Finally, we comment on a possible
connection, in the context of gauge/gravity dualities, between the geometry of
the scalar manifold in N=2 supergravity models and the space of marginal
deformations of the dual field theory.Comment: 32 pages, 11 figures. Introduction rewritten and clarified, comments
and details on section 4 added, acknowledgements rectified. To appear in JHE
Refractive index in holographic superconductors
With the probe limit, we investigate the behavior of the electric
permittivity and effective magnetic permeability and related optical properties
in the s-wave holographic superconductors. In particular, our result shows that
unlike the strong coupled systems which admit a gravity dual of charged black
holes in the bulk, the electric permittivity and effective magnetic
permeability are unable to conspire to bring about the negative
Depine-Lakhtakia index at low frequencies, which implies that the negative
phase velocity does not appear in the holographic superconductors under such a
situation.Comment: JHEP style, 1+15 pages, 11 figures, version to appear in JHE
- …