18,535 research outputs found
KWM: Knowledge-based Workflow Model for agile organization
The workflow management system (WFMS) in an agile organization should be highly adaptable to the frequent organizational changes. To increase the adaptability of contemporary WFMSs, a mechanism for managing changes within the organizational structure and changes in business rules needs to be reinforced. In this paper, a knowledge-based approach for workflow modeling is proposed, in which a workflow is defined as a set of business rules. Knowledge on the organizational structure and special workflow, such as role/actor mappings and complex routing rules, can be explicitly modeled in KWM (Knowledge-based Workflow Model).
Using knowledge representation scheme and dependency management facility, a change propagation mechanism is provided to adapt to the frequent changes in the organizational structure, business rules, and procedures
Equilibrium States of Liquid, Solid, and Vapor and the Configurations for Copper, Tungsten, and Pores in Liquid-Phase Sintering
The equilibrium state of the liquid-solid structure during liquid-phase sintering (LPS) is pondered with respect to minimum energy geometries. Besides the solid-liquid ratio, several interfacial energies determine the most stable geometric configuration. In this study, we rely on the attributes of the copper or nickel as the liquid, tungsten as the solid, and vapor to solve for terminal configurations that include liquid pools inside the solid grains. Surface evolution is enabled using a stepwise computer program[1] to rearrange and reshape small grain clusters reflective of LPS based on a preset combination of wetting and dihedral angles. The findings show how different interfacial energies, as a result of oxidation or impurity segregation, play a role in determining the final geometry. The specific concern is identification of situations in which a liquid is stable inside the solid, as observed in some LPS materials.open112Nsciescopu
Chemical Profiling of the Aerial Parts and Roots of Ixeris dentata Using LCQTOF-MS Combined with Multivariate Chemometric Analysis
Ixeris dentata (Thunb. ex Thunb.) Nakai (Asteraceae) is a perennial herb distributed throughout East Asia including Korea, China and Japan. Both its aerial parts and roots are edible as a bitter appetizing vegetable. In addition, they have been used in folk medicine for the treatment of various diseases. In the present study, the chemical profiles of the aerial parts and roots of I. dentata were investigated using HPLC-QTOF-MS combined with multivariate chemometric analysis. From 18 samples collected in 7 different areas, 30 compounds were characterized and most of them were sesquiterpenes and flavonoids. Principal component analysis of them clearly distinguished the samples of I. dentata by the parts, aerial parts and roots. The loading plots gave the information about the important compounds responsible for the discrimination between plant parts. Hierarchical cluster analysis also showed clear distinction between two parts. Although I. dentata samples derived from the same plant, there was difference in their chemical profiles, which might account for their different use
A model of oxygen dynamics in the cerebral microvasculature and the effects of morphology on flow and metabolism
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.The cerebral microvasculature plays a vital role in adequately supplying blood to the brain. Determining the health of the cerebral microvasculature is important during pathological conditions, such as stroke and dementia. Recent studies have shown the complex behaviour of cerebral metabolic rate with transit time distribution. In this paper, we extend a recently developed technique to solve for residue function and transit time distribution in an existing physiologically accurate model of the cerebral microvasculature to calculate cerebral metabolism. We present the mathematical theory based on solving the mass transport equation followed by results of the simulations. It is found that oxygen extraction fraction and cerebral metabolic rate are dependent on both mean and heterogeneity of the transit time distribution. For changes in cerebral blood flow, a positive correlation can be observed between mean transit time and oxygen extraction fraction, and a negative correlation between mean transit time and metabolic rate of oxygen. The metabolic rate is thus affected more significantly by cerebral blood flow than oxygen extraction fraction. A negative correlation can also be observed between transit time heterogeneity and the metabolic rate of oxygen for a constant cerebral blood flow. The heterogeneity of the transit time distribution also has an effect on the response of oxygen extraction fraction and cerebral metabolic rate to sudden changes. These results provide information on the role of the cerebral microvasculature and its effects on flow and metabolism. They thus open up the possibility of obtaining additional valuable clinical information for diagnosing and treating cerebrovascular diseases
Detection of Polystyrene Microplastic Particles in Water Using Surface-Functionalized Terahertz Microfluidic Metamaterials
We propose a novel method for detecting microplastic particles in water using terahertz metamaterials. Fluidic channels are employed to flow the water, containing polystyrene spheres, on the surface of the metamaterials. Polystyrene spheres are captured only near the gap structure of the metamaterials as the gap areas are functionalized. The resonant frequency of terahertz metamaterials increased while we circulated the microplastic solution, as polystyrene spheres in the solution are attached to the metamaterial gap areas, which saturates at a specific frequency as the gap areas are filled by the polystyrene spheres. Experimental results were revisited and supported by finite-difference time-domain simulations. We investigated how this method can be used for the detection of microplastics with various solution densities. The saturation time of the resonant frequency shift was found to decrease, while the saturated resonant frequency shift increased as the solution density increased
High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO
High performance thin film transistor (TFT) with atomic layer deposition (ALD) nitrogen doped ZnO (ZnO:N) as an active layer is demonstrated. The electrical properties of ZnO thin films were effectively controlled by in situ nitrogen doping using NH4OH as a source for reactants. Especially, the electron concentration in ZnO was lowered to below 10(15) cm(-3). Good device characteristics were obtained from the inverted staggered type TFTs with ZnO:N channel and ALD Al2O3 gate insulator; mu(sat)=6.7 cm(2)/V s, I-off=2.03x10(-12) A, I-on/off=9.46x10(7), and subthreshold swing=0.67 V/decade. The entire TFT fabrication processes were carried out at below 150 degrees C, which is a favorable process for plastic based flexible display. (C) 2007 American Institute of Physics.X11126sciescopu
Measurement of real pulsatile blood flow using x-ray PIV technique with CO2 microbubbles
Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases.1155Ysciescopu
Interactomic analysis of REST/NRSF and implications of its functional links with the transcription suppressor TRIM28 during neuronal differentiation
RE-1 silencing transcription factor (REST) is a transcriptional repressor that regulates gene expression by binding to repressor element 1. However, despite its critical function in physiology, little is known about its interaction proteins. Here we identified 204 REST-interacting proteins using affinity purification and mass spectrometry. The interactome included proteins associated with mRNA processing/splicing, chromatin organization, and transcription. The interactions of these REST-interacting proteins, which included TRIM28, were confirmed by co-immunoprecipitation and immunocytochemistry, respectively. Gene Ontology (GO) analysis revealed that neuronal differentiation-related GO terms were enriched among target genes that were co-regulated by REST and TRIM28, while the level of CTNND2 was increased by the knockdown of REST and TRIM28. Consistently, the level of CTNND2 increased while those of REST and TRIM28 decreased during neuronal differentiation in the primary neurons, suggesting that CTNND2 expression may be coregulated by both. Furthermore, neurite outgrowth was increased by depletion of REST or TRIM28, implying that reduction of both REST and TRIM28 could promote neuronal differentiation via induction of CTNND2 expression. In conclusion, our study of REST reveals novel interacting proteins which could be a valuable resource for investigating unidentified functions of REST and also suggested functional links between REST and TRIM28 during neuronal development.1121Ysciescopu
- …