43 research outputs found

    Chiral Asymmetry from a 5D Higgs Mechanism

    Get PDF
    An intriguing feature of the Standard Model is that the representations of the unbroken gauge symmetries are vector-like whereas those of the spontaneously broken gauge symmetries are chiral. Here we provide a toy model which shows that a natural explanation of this property could emerge in higher dimensional field theories and discuss the difficulties that arise in the attempt to construct a realistic theory. An interesting aspect of this type of models is that the 4D low energy effective theory is not generically gauge invariant. However, the non-invariant contributions to the observable quantities are very small, of the order of the square of the ratio between the light particle mass scale and the Kaluza-Klein mass scale. Remarkably, when we take the unbroken limit both the chiral asymmetry and the non-invariant terms disappear.Comment: 30 pages, 5 figures, uses axodraw.sty. Extended version, matches the article published on JHE

    Gauge Fields, Fermions and Mass Gaps in 6D Brane Worlds

    Full text link
    We study fluctuations about axisymmetric warped brane solutions in 6D minimal gauged supergravity. Much of our analysis is general and could be applied to other scenarios. We focus on bulk sectors that could give rise to Standard Model gauge fields and charged matter. We reduce the dynamics to Schroedinger type equations plus physical boundary conditions, and obtain exact solutions for the Kaluza-Klein wave functions and discrete mass spectra. The power-law warping, as opposed to exponential in 5D, means that zero mode wave functions can be peaked on negative tension branes, but only at the price of localizing the whole Kaluza-Klein tower there. However, remarkably, the codimension two defects allow the Kaluza-Klein mass gap to remain finite even in the infinite volume limit. In principle, not only gravity, but Standard Model fields could `feel' the extent of large extra dimensions, and still be described by an effective 4D theory.Comment: 33 pages, 2 figures; typesetting problem fixed ({\o}replaced by \omega

    Supersymmetry Breaking and Moduli Stabilization with Anomalous U(1) Gauge Symmetry

    Get PDF
    We examine the effects of anomalous U(1)_A gauge symmetry on soft supersymmetry breaking terms while incorporating the stabilization of the modulus-axion multiplet responsible for the Green-Schwarz (GS) anomaly cancellation mechanism. In case of the KKLT stabilization of the GS modulus, soft terms are determined by the GS modulus mediation, the anomaly mediation and the U(1)_A mediation which are generically comparable to each other, thereby yielding the mirage mediation pattern of superparticle masses at low energy scale. Independently of the mechanism of moduli stabilization and supersymmetry breaking, the U(1)_A D-term potential can not be an uplifting potential for de Sitter vacuum when the gravitino mass is smaller than the Planck scale by many orders of magnitude. We also discuss some features of the supersymmetry breaking by red-shifted anti-brane which is a key element of the KKLT moduli stabilization.Comment: 32 pages; references are adde

    On supersymmetric Minkowski vacua in IIB orientifolds

    Full text link
    Supersymmetric Minkowski vacua in IIB orientifold compactifications based on orbifolds with background fluxes and non-perturbative superpotentials are investigated. Especially, microscopic requirements and difficulties to obtain such vacua are discussed. We show that orbifold models with one and two complex structure moduli and supersymmetric 2-form flux can be successfully stabilized to such vacua. By taking additional gaugino condensation on fixed space-time filling D3-branes into account also models without complex structure can be consistently stabilized to Minkowski vacua.Comment: 17 pages, 2 figures; More detailed proof for absence of complex flat directions in susy AdS vacua given; Footnotes and reference adde

    Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications

    Full text link
    We study the behaviour of the string loop corrections to the N=1 4D supergravity Kaehler potential that occur in flux compactifications of IIB string theory on general Calabi-Yau three-folds. We give a low energy interpretation for the conjecture of Berg, Haack and Pajer for the form of the loop corrections to the Kaehler potential. We check the consistency of this interpretation in several examples. We show that for arbitrary Calabi-Yaus, the leading contribution of these corrections to the scalar potential is always vanishing, giving an "extended no-scale structure". This result holds as long as the corrections are homogeneous functions of degree -2 in the 2-cycle volumes. We use the Coleman-Weinberg potential to motivate this cancellation from the viewpoint of low-energy field theory. Finally we give a simple formula for the 1-loop correction to the scalar potential in terms of the tree-level Kaehler metric and the correction to the Kaehler potential. We illustrate our ideas with several examples. A companion paper will use these results in the study of Kaehler moduli stabilisation.Comment: 34 pages and 3 figures; typos corrected and references adde

    The 6D SuperSwirl

    Full text link
    We present a novel supersymmetric solution to a nonlinear sigma model coupled to supergravity. The solution represents a static, supersymmetric, codimension-two object, which is different to the familiar cosmic strings. In particular, we consider 6D chiral gauged supergravity, whose spectrum contains a number of hypermultiplets. The scalar components of the hypermultiplet are charged under a gauge field, and supersymmetry implies that they experience a simple paraboloid-like (or 2D infinite well) potential, which is minimised when they vanish. Unlike conventional vortices, the energy density of our configuration is not localized to a string-like core. The solutions have two timelike singularities in the internal manifold, which provide the necessary boundary conditions to ensure that the scalars do not lie at the minimum of their potential. The 4D spacetime is flat, and the solution is a continuous deformation of the so-called ``rugby ball'' solution, which has been studied in the context of the cosmological constant problem. It represents an unexpected class of supersymmetric solutions to the 6D theory, which have gravity, gauge fluxes and hyperscalars all active in the background.Comment: 26 pages, 2 figures, JHEP3 class. Typos corrected, analysis expanded, references adde

    A comment on pp-branes of (p+3p+3)d\rm{d} string theory

    Full text link
    We argue that in (p+3p+3)d string theory the existence of NS-NS type pp-brane with negative tension is essential to obtain background geometry R2R_2 or R2/ZnR_2 / Z_n on the transverse dimensions, and the usual codimension-2 brane solutions with these background geometries already contain the negative tension NS-brane implicity in their ansatz. Such an argument leads us, in the context of brane world scenarios, to a conjecture that true background pp-brane immanent in our spacetime may perhaps be NS-NS type brane, rather than D-brane.Comment: 16 pages. Version to appear in JHE

    Lifetime of Stringy de Sitter Vacua

    Full text link
    In this note we perform a synopsis of the life-times from vacuum decay of several de Sitter vacuum constructions in string/M-theory which have a single dS minimum arising from lifting a pre-existing AdS extremum and no other local minima existent after lifting. For these vacua the decay proceeds via a Coleman--De Luccia instanton towards the universal Minkowski minimum at infinite volume. This can be calculated using the thin--wall approximation, provided the cosmological constant of the local dS minimum is tuned sufficiently small. We compare the estimates for the different model classes and find them all stable in the sense of exponentially long life times as long as they have a very small cosmological constant and a scale of supersymmetry breaking > TeV.Comment: 1+16 pages, 2 figures, LaTeX, uses JHEP3 class, v2: references added, inclusion of an additional subclass of de Sitter vacu

    Moduli stabilization with Fayet-Iliopoulos uplift

    Get PDF
    In the recent years, phenomenological models of moduli stabilization were proposed, where the dynamics of the stabilization is essentially supersymmetric, whereas an O'Rafearthaigh supersymmetry breaking sector is responsible for the "uplift" of the cosmological constant to zero. We investigate the case where the uplift is provided by a Fayet-Iliopoulos sector. We find that in this case the modulus contribution to supersymmetry breaking is larger than in the previous models. A first consequence of this class of constructions is for gauginos, which are heavier compared to previous models. In some of our explicit examples, due to a non-standard gauge-mediation type negative contribution to scalars masses, the whole superpartner spectrum can be efficiently compressed at low-energy. This provides an original phenomenology testable at the LHC, in particular sleptons are generically heavier than the squarks.Comment: 29 pages, 2 figure

    Metastable supergravity vacua with F and D supersymmetry breaking

    Get PDF
    We study the conditions under which a generic supergravity model involving chiral and vector multiplets can admit viable metastable vacua with spontaneously broken supersymmetry and realistic cosmological constant. To do so, we impose that on the vacuum the scalar potential and all its first derivatives vanish, and derive a necessary condition for the matrix of its second derivatives to be positive definite. We study then the constraints set by the combination of the flatness condition needed for the tuning of the cosmological constant and the stability condition that is necessary to avoid unstable modes. We find that the existence of such a viable vacuum implies a condition involving the curvature tensor for the scalar geometry and the charge and mass matrices for the vector fields. Moreover, for given curvature, charges and masses satisfying this constraint, the vector of F and D auxiliary fields defining the Goldstino direction is constrained to lie within a certain domain. The effect of vector multiplets relative to chiral multiplets is maximal when the masses of the vector fields are comparable to the gravitino mass. When the masses are instead much larger or much smaller than the gravitino mass, the effect becomes small and translates into a correction to the effective curvature. We finally apply our results to some simple classes of examples, to illustrate their relevance.Comment: 40 pages; v2 some clarifications added in the introduction; v3 some typos correcte
    corecore