4,227 research outputs found
Rigidity spectrum of Forbush decrease
Using data from neutron monitors and muon telescopes at surface and underground stations, the average rigidity spectrum of Forbush decreases (Fds) during the period of 1978-1982 were obtained. Thirty eight Ed-events are classified into two groups Hard Fd and Soft Fd according to size of Fd at Sakashita station. It is found that a spectral form of fractional-power type (P to the-gamma sub 1 (P+P sub c) to the -gamma sub2) is more suitable for the present purpose than that of power-exponential type or of power type with an upper limiting rigidity. The best fitted spectrum of fractional-power type is expressed by gamma sub1 = 0.37, gamma sub2 = 0.89 and P subc = 10 GV for Hard Fd and gamma sub1 = 0.77, gamma sub2 = 1.02 and P sub c - 14GV for Soft Fd
Investigation of the components of the NAL high Reynolds number two-dimensional wind tunnel. Part 4: Design, construction and performance of the exhaust silencer
Presented is a description of the design construction and performance of the exhaust silencer for the NAL high Reynolds number two-dimensional transonic blow down wind tunnel, which was completed in October 1979. The silencer is a two-storied construction made of reinforced concrete, 40 m. long, 10 m. wide and 19 m. high and entirely enclosed by thick concrete walls. The upstream part of the first story, particularly, is covered with double walls, the thickness of the two walls being 0.3 m. (inner wall) and 0.2 m. (outer wall), respectively. A noise reduction system using three kinds of parallel baffles and two kinds of lined bends is adopted for the wind tunnel exhaust noise
Thermodynamic properties of quadrupolar states in the frustrated pyrochlore magnet TbTiO
The low-temperature thermodynamic properties of the frustrated pyrochlore
TbTiO have been studied using the single crystal of
sitting in a long range ordered phase in the - phase diagram.
We observed that the specific heat exhibits a minimum around 2 K and slightly
increases on cooling, similar to a Schottky-like anomaly for canonical spin
ices. A clear specific-heat peak observed at K is ascribable
to the phase transition to a quadrupolar state, which contributes to a
relatively large change in entropy, J Kmol.
However, it is still smaller than for the ground state doublet of the
Tb ions. The entropy release persists to higher temperatures, suggesting strong
fluctuations associated with spin ice correlations above . We
discuss the field dependence of the entropy change for and
.Comment: 6 pages, 2 figure
Quasi-one-dimensional Bose-Einstein Condensation in the Spin-1/2 Ferromagnetic-leg Ladder 3-I-V
Quantum criticality of the spin-1/2 ferromagnetic-leg ladder 3-I-V
[=3-(3-iodophenyl)-1,5-diphenylverdazyl] has been examined with respect to the
antiferromagnetic to paramagnetic phase transition near the saturation field
. The phase boundary follows the power-law for a wide temperature range. This characteristic behavior is
discussed as a quasi-one-dimensional (quasi-1D) Bose-Einstein condensation,
which is predicted theoretically for weakly coupled quasi-1D ferromagnets.
Thus, 3-I-V provides the first promising candidate for this attractive
prediction.Comment: 5 pages, 6 figures, accepted in Physical Review B as a Rapid
Communicatio
Metamagnetic Quantum Criticality Revealed by 17O-NMR in the Itinerant Metamagnet Sr3Ru2O7
We have investigated the spin dynamics in the bilayered perovskite Sr3Ru2O7
as a function of magnetic field and temperature using 17O-NMR. This system sits
close to a metamagnetic quantum critical point (MMQCP) for the field
perpendicular to the ruthenium oxide planes. We confirm Fermi-liquid behavior
at low temperatures except for a narrow field region close to the MMQCP. The
nuclear spin-lattice relaxation rate divided by temperature 1/T1T is enhanced
on approaching the metamagnetic critical field of 7.9 T and at the critical
field 1/T1T continues to increase and does not show Fermi- liquid behavior down
to 0.3 K. The temperature dependence of T1T in this region suggests the
critical temperature Theta to be 0 K, which is a strong evidence that the spin
dynamics possesses a quantum critical character. Comparison between uniform
susceptibility and 1/T1T reveals that antiferromagnetic fluctuations instead of
two-dimensional ferromagnetic fluctuations dominate the spin fluctuation
spectrum at the critical field, which is unexpected for itinerant
metamagnetism.Comment: 5 pages, 4 figures, Accepted by Phys. Rev. Let
Field-angle Dependence of the Zero-Energy Density of States in the Unconventional Heavy-Fermion Superconductor CeCoIn5
Field-angle dependent specific heat measurement has been done on the
heavy-fermion superconductor CeCoIn5 down to ~ 0.29 K, in a magnetic field
rotating in the tetragonal c-plane. A clear fourfold angular oscillation is
observed in the specific heat with the minima (maxima) occurring along the
[100] ([110]) directions. Oscillation persists down to low fields H << Hc2,
thus directly proving the existence of gap nodes. The results indicate that the
superconducting gap symmetry is most probably of dxy type.Comment: 8 pages, 3 figures, to be published in J. Phys. Condens. Matte
- …
