71 research outputs found

    MEMS Materials and Processes: a research overview

    Get PDF
    An overview is provided of materials and processes research currently being conducted in support of MEMS device design at MIT. Underpinning research is being conducted in five areas: room temperature strength characterization, elevated temperature strength characterization, processing of Si/SiC hybrid structures, modeling of wafer bonding processes and development of high temperature fluid interconnections. Emphasis is placed on the key areas of materials science and engineering.Singapore-MIT Alliance (SMA

    Effect of Wafer Bow and Etch Patterns in Direct Wafer Bonding

    Get PDF
    Direct wafer bonding has been identified as an en-abling technology for microelectromechanical systems (MEMS). As the complexity of devices increase and the bonding of multiple patterned wafers is required, there is a need to understand the factors that lead to bonding failure. Bonding relies on short-ranged surface forces, thus flatness deviations of the wafers may prevent bonding. Bonding success is determined by whether or not the surface forces are sufficient to overcome the flatness deviations and deform the wafers to a common shape. A general bonding criterion based on this fact is developed by comparing the strain energy required to deform the wafers to the surface energy that is dissipated as the bond is formed. The bonding criterion is used to examine the case of bonding bowed wafers with etch patterns on the bonding surface. An analytical expression for the bonding criterion is developed using plate theory for the case of bowed wafers. Then, the criterion is implemented using finite element analysis, to demonstrate its use and to validate the analytical model. The results indicate that wafer thickness and curvature are important in determining bonding success and that the bonding criterion is independent of wafer diameter. Results also demonstrate that shallow etched patterns can make bonding more difficult while deep features, which penetrate through an appreciable thickness of the wafer, may facilitate bonding. Design implications of the model results are discussed in detail. Preliminary results from experiments designed to validate the model, agree with the trends seen in the model, but further work is required to achieve quantitative correlation.Singapore-MIT Alliance (SMA

    Materials Selection and Design of Microelectrothermal Bimaterial Actuators

    Full text link

    A Constitutive Model for the Mechanical Behavior of Single Crystal Silicon at Elevated Temperature

    Get PDF
    Silicon in single crystal form has been the material of choice for the first demonstration of the MIT microengine project. However, because it has a relatively low melting temperature, silicon is not an ideal material for the intended operational environment of high temperature and stress. In addition, preliminary work indicates that single crystal silicon has a tendency to undergo localized deformation by slip band formation. Thus it is critical to obtain a better understanding of the mechanical behavior of this material at elevated temperatures in order to properly exploit its capabilities as a structural material. Creep tests in simple compression with n-type single crystal silicon, with low initial dislocation density, were conducted over a temperature range of 900 K to 1200 K and a stress range of 10 MPa to 120 MPa. The compression specimens were machined such that the multi-slip or orientations were coincident with the compression axis. The creep tests reveal that response can be delineated into two broad regimes: (a) in the first regime rapid dislocation multiplication is responsible for accelerating creep rates, and (b) in the second regime an increasing resistance to dislocation motion is responsible for the decelerating creep rates, as is typically observed for creep in metals. An isotropic elasto-viscoplastic constitutive model that accounts for these two mechanisms has been developed in support of the design of the high temperature turbine structure of the MIT microengine.Singapore-MIT Alliance (SMA

    Process development of silicon-silicon carbide hybrid structures for micro-engines (January 2002)

    Get PDF
    MEMS-based gas turbine engines are currently under development at MIT for use as a button-sized portable power generator or micro-aircraft propulsion sources. Power densities expected for the micro-engines require very high rotor peripheral speeds of 300-600m/s and high combustion gas temperatures of 1300-1700K. These harsh requirements for the engine operation induce very high stress levels in the engine structure, and thus call for qualified refractory materials with high strength. Silicon carbide (SiC) has been chosen as the most promising material for use due to its high strength and chemical inertness at elevated temperatures. However, the state-of-the art microfabrication techniques for single-crystal SiC are not yet mature enough to achieve the required level of high precision of micro-engine components. To circumvent this limitation and to take advantage of the well-established precise silicon microfabrication technologies, silicon-silicon carbide hybrid turbine structures are being developed using chemical vapor deposition (CVD) of thick SiC (up to ~70µm) on silicon wafers and wafer bonding processes. Residual stress control of thick SiC layers is of critical importance to all the silicon-silicon carbide hybrid structure fabrication steps since a high level of residual stresses causes wafer cracking during the planarization, as well as excessive wafer bow, which is detrimental to the subsequent planarization and bonding processes. The origins of the residual stress in CVD SiC layers have been studied. SiC layers (as thick as 30µm) with low residual stresses (on the order of several tens of MPa) have been produced by controlling CVD process parameters such as temperature and gas ratio. Wafer-level SiC planarization has been accomplished by mechanical polishing using diamond grit and bonding processes are currently under development using CVD silicon dioxide as an interlayer material. This paper reports on the work that has been done so far under the MIT micro-engine project.Singapore-MIT Alliance (SMA

    Wafer-Level Thermocompression Bonds

    Get PDF
    Thermocompression bonding of gold is a promising technique for achieving low temperature, wafer-level bonding without the application of an electric field or complicated pre-bond cleaning procedure. The presence of a ductile layer influences the fracture behavior of the bonds. The fabrication process was described. In addition, the effect of plasticity was explored by varying the gold bonding thickness between 0.23 to 1.4 µm. Wafers were bonded at 300°C and two different pressures: 1.25 and 7 MPa. The bond toughness of the specimens were characterized using a four-point bend delamination technique. Cohesive failure was found to be the dominant fracture mode in the thicker films. Bonds made with thin gold films failed adhesively and at lower strain energy release rates.Singapore-MIT Alliance (SMA

    Gold Thermocompression Wafer Bonding

    Get PDF
    Thermocompression bonding of gold is a promising technique for the fabrication and packaging microelectronic and MEMS devices. The use of a gold interlayer and moderate temperatures and pressures results in a hermetic, electrically conductive bond. This paper documents work conducted to model the effect of patterning in causing pressure non-uniformities across the wafer and its effect on the subsequent fracture response. A finite element model was created that revealed pattern-dependent local pressure variations of more than a factor of three. This variation is consistent with experimental observations of bond quality across individual wafers A cohesive zone model was used to investigate the resulting effect of non-uniform bond quality on the fracture behavior. A good, qualitative agreement was obtained with experimental observations of the load-displacement response of bonds in fracture tests.Singapore-MIT Alliance (SMA

    Development of a Classical Force Field for the Oxidised Si Surface: Application to Hydrophilic Wafer Bonding

    Full text link
    We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidised Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO2 polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress and interactions with single water molecules of a natively oxidised Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidised and amorphous silica surfaces of 97 mJ/m2 and 90mJ/m2, respectively, at a water adsorption coverage of approximately 1 monolayer. The difference arises from the stronger interaction of the natively oxidised surface with liquid water, resulting in a higher heat of immersion (203 mJ/m2 vs. 166 mJ/m2), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller density with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account

    Optimization of micro and nanoimprint de-embossing by elastic fracture modelling

    Full text link
    A semi-analytical model is presented for the de-embossing phase of the nanoimprint patterning process. The model is based on established principles of elastic fracture mechanics as developed for fibre-bridged cracking in composites. De-embossing is idealized as a steady-state fracture process, which enables the energy change to be considered by reference to a unit cell of a cylindrical polymer post, de-embossing from an axisymmetric stamp. The model provides predictions of the achievable limits for de-embossing as a function of key geometrical variables such as feature size, area ratio and aspect ratio and material properties such as interfacial adhesion, shear strength, polymer yield strength and the ratio of the elastic moduli of the polymer and the stamp. Process 'maps' have been created showing de-embossing limits. A strong dependence of the achievable aspect ratio on the pattern area ratio and the interfacial shear stress is seen. For polymer yield stresses similar to that of PMMA, the critical interfacial strain energy release rate has little effect on de-embossing. Large area and aspect ratios are predicted to be achievable by keeping the ratio of polymer and stamp Young's moduli between 0.015 and 2.5. The model provides key insights into the physical origins of previously observed limits on the achievable aspect ratios and area ratios achieved by imprint patternin

    Multi-instrument multi-scale experimental damage mechanics for fibre reinforced composites

    Get PDF
    © Published under licence by IOP Publishing Ltd. Reliable investigation of damage in fibre reinforced composites requires concurrent in- and ex-situ application of multiple instruments at different scale: digital image correlation, acoustic emission registration, optical/electron microscopy, C-scan, X-ray imaging and micro-computed tomography. The multi-instrument experimental mechanics allows detailed damage monitoring and inspection
    • …
    corecore