50 research outputs found
Supercooling of the high field vortex phase in single crystalline BSCCO
Time resolved magneto-optical images show hysteresis associated with the
transition at the so-called ``second magnetization peak'' at B_sp in
single-crystalline Bi_2Sr_2CaCu_2O_8+d. By rapid quenching of the high-field
phase, it can be made to persist metastably in the sample down to fields that
are nearly half B_sp.Comment: 2 pages, 2 figures Submitted to the conference proceedings of M2S-VI,
February 200, Housto
Critical points in the Bragg glass phase of a weakly pinned crystal of CaRhSn
New experimental data are presented on the scan rate dependence of the
magnetization hysteresis width ( critical current
density ) in isothermal scans in a weakly pinned single crystal
of CaRhSn, which displays second magnetization peak (SMP)
anomaly as distinct from the peak effect (PE). We observe an interesting
modulation in the field dependence of a parameter which purports to measure the
dynamical annealing of the disordered bundles of vortices injected through the
sample edges towards the destined equilibrium vortex state at a given .
These data, in conjunction with the earlier observations made while studying
the thermomagnetic history dependence in in the tracing of the minor
hysteresis loops, imply that the partially disordered state heals towards the
more ordered state between the peak field of the SMP anomaly and the onset
field of the PE. The vortex phase diagram in the given crystal of
CaRhSn has been updated in the context of the notion of the
phase coexistence of the ordered and disordered regions between the onset field
of the SMP anomaly and the spinodal line located just prior to the
irreversibility line. A multi-critical point and a critical point in the
() region of the Bragg glass phase have been marked in this phase diagram
and the observed behaviour is discussed in the light of recent data on
multi-critical point in the vortex phase diagram in a single crystal of Nb.Comment: To appear in Current trends in Vortex State Studies - Pramana J.
Physic
Critical depinning force and vortex lattice order in disordered superconductors
We simulate the ordering of vortices and its effects on the critical current
in superconductors with varied vortex-vortex interaction strength and varied
pinning strengths for a two-dimensional system. For strong pinning the vortex
lattice is always disordered and the critical depinning force only weakly
increases with decreasing vortex-vortex interactions. For weak pinning the
vortex lattice is defect free until the vortex-vortex interactions have been
reduced to a low value, when defects begin to appear with a simultaneous rapid
increase in the critical depinning force. In each case the depinning force
shows a maximum for non-interacting vortices. The relative height of the peak
increases and the peak width decreases for decreasing pinning strength in
excellent agreement with experimental trends associated with the peak effect.
We show that scaling relations exist between the distance between defects in
the vortex lattice and the critical depinning force.Comment: 5 pages, 6 figure
History effect in inhomogeneous superconductors
A model was proposed to account for a new kind of history effect in the
transport measurement of a sample with inhomogeneous flux pinning coupled with
flux creep. The inhomogeneity of flux pinning was described in terms of
alternating weak pinning (lower jc) and strong pinning region (higher jc). The
flux creep was characterized by logarithmic barrier. Based on this model, we
numerically observed the same clockwise V-I loops as reported in references.
Moreover, we predicted behaviors of the V-I loop at different sweeping rates of
applied current dI/dt or magnetic fields Ba, etc. Electric transport
measurement was performed in Ag-sheathed Bi2-xPbxSr2Ca2Cu3Oy tapes immersed in
liquid nitrogen with and without magnetic fields. V-I loop at certain dI/dt and
Ba was observed. It is found that the area of the loop is more sensitive to
dI/dt than to Ba, which is in agreement well with our numerical results.Comment: To appear in Phys Rev B, October 1 Issu
Peak effect, vortex-lattice melting-line and order - disorder transition in conventional and high-T superconductors
We investigate the order - disorder transition line from a Bragg glass to an
amorphous vortex glass in the H-T phase diagram of three-dimensional type-II
superconductors with account of both pinning-caused and thermal fluctuations of
the vortex lattice. Our approach is based on the Lindemann criterion and on
results of the collective pinning theory and generalizes previous work of other
authors. It is shown that the shapes of the order - disorder transition line
and the vortex lattice melting curve are determined only by the Ginzburg
number, which characterizes thermal fluctuations, and by a parameter which
describes the strength of the quenched disorder in the flux-line lattice. In
the framework of this unified approach we obtain the H-T phase diagrams for
both conventional and high-Tc superconductors. Several well-known experimental
results concerning the fishtail effect and the phase diagram of high-Tc
superconductors are naturally explained by assuming that a peak effect in the
critical current density versus H signalizes the order - disorder transition
line in superconductors with point defects.Comment: 15 pages including 11 figure
Plasticity and memory effects in the vortex solid phase of twinned YBa2Cu3O7 single crystals
We report on marked memory effects in the vortex system of twinned YBa2Cu3O7
single crystals observed in ac susceptibility measurements. We show that the
vortex system can be trapped in different metastable states with variable
degree of order arising in response to different system histories. The pressure
exerted by the oscillating ac field assists the vortex system in ordering,
locally reducing the critical current density in the penetrated outer zone of
the sample. The robustness of the ordered and disordered states together with
the spatial profile of the critical current density lead to the observed memory
effects
Hysteretic behavior of the vortex lattice at the onset of the second peak for HgBaCuO superconductor
By means of local Hall probe ac and dc permeability measurements we
investigated the phase diagram of vortex matter for the HgBaCuO superconductor in the regime near the critical temperature. The second peak
line, , in contrast to what is usually assumed, doesn't terminate
at the critical temperature. Our local ac permeability measurements revealed
pronounced hysteretic behavior and thermomagnetic history effects near the
onset of the second peak, giving evidence for a phase transition of vortex
matter from an ordered qausilattice state to a disordered glass
Stable and Metastable vortex states and the first order transition across the peak effect region in weakly pinned 2H-NbSe_2
The peak effect in weakly pinned superconductors is accompanied by metastable
vortex states. Each metastable vortex configuration is characterized by a
different critical current density J_c, which mainly depends on the past
thermomagnetic history of the superconductor. A recent model [G. Ravikumar, et
al, Phys. Rev. B 61, R6479 (2000)] proposed to explain the history dependent
J_c postulates a stable state of vortex lattice with a critical current density
J_c^{st}, determined uniquely by the field and temperature. In this paper, we
present evidence for the existence of the stable state of the vortex lattice in
the peak effect region of 2H-NbSe_2. It is shown that this stable state can be
reached from any metastable vortex state by cycling the applied field by a
small amplitude. The minor magnetization loops obtained by repeated field
cycling allow us to determine the pinning and "equilibrium" properties of the
stable state of the vortex lattice at a given field and temperature
unambiguously. The data imply the occurence of a first order phase transition
from an ordered phase to a disordered vortex phase across the peak effect.Comment: 20 pages, 10 figures. Corresponding author: S. Ramakrishna
A study of supercooling of the disordered vortex phase via minor hysteresis loops in 2H-NbSe_2
We report on the observation of novel features in the minor hysteresis loops
in a clean crystal of NbSe_2 which displays a peak effect. The observed
behavior can be explained in terms of a supercooling of the disordered vortex
phase while cooling the superconductor in a field. Also, the extent of spatial
order in a flux line lattice formed in ascending fields is different from (and
larger than) that in the descending fields below the peak position of the peak
effect; this is attributed to unequal degree of annealing of the state induced
by a change of field in the two cases.Comment: 5 pages of text + 6 figures, submitted to Phys. Rev.
Disorder and thermally driven vortex-lattice melting in La{2-x}Sr{x}CuO{4} crystals
Magnetization measurements in La{2-x}Sr{x}CuO{4} crystals indicate vortex
order-disorder transition manifested by a sharp kink in the second
magnetization peak. The transition field exhibits unique temperature
dependence, namely a strong decrease with temperature in the entire measured
range. This behavior rules out the conventional interpretation of a
disorder-driven transition into an entangled vortex solid phase. It is shown
that the transition in La{2-x}Sr{x}CuO{4} is driven by both thermally- and
disorder-induced fluctuations, resulting in a pinned liquid state. We conclude
that vortex solid-liquid, solid-solid and solid to pinned-liquid transitions
are different manifestations of the same thermodynamic order-disorder
transition, distinguished by the relative contributions of thermal and
disorder-induced fluctuations.Comment: To be published in phys. Rev. B Rapid Com