57,061 research outputs found

    Carrier transport in 2D graphene layers

    Full text link
    Carrier transport in gated 2D graphene monolayers is theoretically considered in the presence of scattering by random charged impurity centers with density nin_i. Excellent quantitative agreement is obtained (for carrier density n>1012cm−2n > 10^{12} \rm{cm}^{-2}) with existing experimental data (Ref. \onlinecite{kn:novoselov2004, kn:novoselov2005, kn:zhang2005, kn:kim2006, kn:fuhrer2006}). The conductivity scales linearly with n/nin/n_i in the theory, and shows extremely weak temperature dependence. The experimentally observed asymmetry between electron and hole conductivities is explained by the asymmetry in the charged impurity configuration in the presence of the gate voltage, while the high-density saturation of conductivity for the highest mobility samples is explained as a crossover between the long-range and the point scattering dominated regimes. We argue that the experimentally observed saturation of conductivity at low density arises from the charged impurity induced inhomogeneity in the graphene carrier density which becomes severe for n≲ni∼1012cm−2n \lesssim n_i \sim 10^{12} \rm{cm}^{-2}.Comment: 5 pages, 4 figures, published in Phys. Rev. Let

    Infiltration through porous media

    Full text link
    We study the kinetics of infiltration in which contaminant particles, which are suspended in a flowing carrier fluid, penetrate a porous medium. The progress of the ``invader'' particles is impeded by their trapping on active ``defender'' sites which are on the surfaces of the medium. As the defenders are used up, the invader penetrates further and ultimately breaks through. We study this process in the regime where the particles are much smaller than the pores so that the permeability change due to trapping is negligible. We develop a family of microscopic models of increasing realism to determine the propagation velocity of the invasion front, as well as the shapes of the invader and defender profiles. The predictions of our model agree qualitatively with experimental results on breakthrough times and the time dependence of the invader concentration at the output. Our results also provide practical guidelines for improving the design of deep bed filters in which infiltration is the primary separation mechanism.Comment: 13 pages, 12 figures, Revtex 2-column forma

    Improved testing for the efficiency of asset pricing theories in linear factor models

    Get PDF
    This paper suggests a refinement of the standard T2 test statistic used in testing asset pricing theories in linear factor models. The test is designed to have improved power characteristics and to deal with the empirically important case where there are many more assets than time periods. This is necessary because the case of too few time periods invalidates the conventional T2. Furthermore, the test is shown to have reasonable power in cases where common factors are present in the residual covariance matrix

    Origin of the hub spectral dimension in scale-free networks

    Full text link
    The return-to-origin probability and the first passage time distribution are essential quantities for understanding transport phenomena in diverse systems. The behaviors of these quantities typically depend on the spectral dimension dsd_s. However, it was recently revealed that in scale-free networks these quantities show a crossover between two power-law regimes characterized by ds d_s and the so-called hub spectral dimension ds(hub)d_s^{\textrm{(hub)}} due to the heterogeneity of connectivities of each node. To understand the origin of ds(hub)d_s^{\textrm{(hub)}} from a theoretical perspective, we study a random walk problem on hierarchical scale-free networks by using the renormalization group (RG) approach. Under the RG transformation, not only the system size but also the degree of each node changes due to the scale-free nature of the degree distribution. We show that the anomalous behavior of random walks involving the hub spectral dimension ds(hub)d_s^{\textrm{(hub)}} is induced by the conservation of the power-law degree distribution under the RG transformation.Comment: 10pages, 2figure

    Efficient Schemes for Reducing Imperfect Collective Decoherences

    Get PDF
    We propose schemes that are efficient when each pair of qubits undergoes some imperfect collective decoherence with different baths. In the proposed scheme, each pair of qubits is first encoded in a decoherence-free subspace composed of two qubits. Leakage out of the encoding space generated by the imperfection is reduced by the quantum Zeno effect. Phase errors in the encoded bits generated by the imperfection are reduced by concatenation of the decoherence-free subspace with either a three-qubit quantum error correcting code that corrects only phase errors or a two-qubit quantum error detecting code that detects only phase errors, connected with the quantum Zeno effect again.Comment: no correction, 3 pages, RevTe
    • …
    corecore