49,063 research outputs found
Maneuvering strategies using CMGs
This paper considers control strategies for maneuvering spacecraft using Single-Gimbal Control Momentum Gyros (CMGs). A pyramid configuration using four gyros is utilized. Preferred initial gimbal angles for maximum utilization of CMG momentum are obtained for some known torque commands. Feedback control laws are derived from the stability point of view by using the Liapunov's Second Theorem. The gyro rates are obtained by the pseudo-inverse technique. The effect of gimbal rate bounds on controllability are studied for an example maneuver. Singularity avoidance is based on limiting the gyro rates depending on a singularity index
Hadronic B Decays to Charmless VT Final States
Charmless hadronic decays of B mesons to a vector meson (V) and a tensor
meson (T) are analyzed in the frameworks of both flavor SU(3) symmetry and
generalized factorization. We also make comments on B decays to two tensor
mesons in the final states. Certain ways to test validity of the generalized
factorization are proposed, using decays. We calculate the branching
ratios and CP asymmetries using the full effective Hamiltonian including all
the penguin operators and the form factors obtained in the non-relativistic
quark model of Isgur, Scora, Grinstein and Wise.Comment: 27 pages, no figures, LaTe
Recent Neutrino Data and Type III Seesaw with Discrete Symmetry
In light of the recent neutrino experiment results from Daya Bay and RENO
Collaborations, we study phenomenology of neutrino mixing angles in the Type
III seesaw model with an discrete symmetry, whose
spontaneously breaking scale is much higher than the electroweak scale. At tree
level, the tri-bimaximal (TBM) form of the lepton mixing matrix can be obtained
from leptonic Yukawa interactions in a natural way. We introduce all possible
effective dimension-5 operators, invariant under the Standard Model gauge group
and , and explicitly show that they induce a deviation of the
lepton mixing from the TBM mixing matrix, which can explain a large mixing
angle together with small deviations of the solar and atmospheric
mixing angles from the TBM. Two possible scenarios are investigated, by taking
into account either negligible or sizable contributions from the light charged
lepton sector to the lepton mixing matrix. Especially it is found in the latter
scenario that all the neutrino experimental data, including the recent best-fit
value of , can be accommodated. The leptonic CP
violation characterized by the Jarlskog invariant has a non-vanishing
value, indicating a signal of maximal CP violation.Comment: 28 pages, 7 figures and references are adde
Prediction of airfoil stall using Navier-Stokes equations in streamline coordinates
A Navier-Stokes procedure to calculate the flow about an airfoil at incidence was developed. The parabolized equations are solved in the streamline coordinates generated for an arbitrary airfoil shape using conformal mapping. A modified k-epsilon turbulence model is applied in the entire domain, but the eddy viscosity in the laminar region is suppressed artificially to simulate the region correctly. The procedure was applied to airfoils at various angles of attack, and the results are quite satisfactory for both laminar and turbulent flows. It is shown that the present choice of the coordinate system reduces the error due to numerical diffusion, and that the lift is accurately predicted for a wide range of incidence
Higher and missing resonances in omega photoproduction
We study the role of the nucleon resonances () in
photoproduction by using the quark model resonance parameters predicted by
Capstick and Roberts. The employed and
amplitudes include the configuration mixing effects due to the residual
quark-quark interactions. The contributions from the nucleon resonances are
found to be important in the differential cross sections at large scattering
angles and various spin observables. In particular, the parity asymmetry and
beam-target double asymmetry at forward scattering angles are suggested for a
crucial test of our predictions. The dominant contributions are found to be
from , a missing resonance, and which is
identified as the of the Particle Data Group.Comment: 8 pages, LaTeX with ws-p8-50x6-00.cls, 4 figures (5 eps files), Talk
presented at the NSTAR2001 Workshop on the Physics of Excited Nucleons,
Mainz, Germany, Mar. 7-10, 200
Deep Virtual Networks for Memory Efficient Inference of Multiple Tasks
Deep networks consume a large amount of memory by their nature. A natural
question arises can we reduce that memory requirement whilst maintaining
performance. In particular, in this work we address the problem of memory
efficient learning for multiple tasks. To this end, we propose a novel network
architecture producing multiple networks of different configurations, termed
deep virtual networks (DVNs), for different tasks. Each DVN is specialized for
a single task and structured hierarchically. The hierarchical structure, which
contains multiple levels of hierarchy corresponding to different numbers of
parameters, enables multiple inference for different memory budgets. The
building block of a deep virtual network is based on a disjoint collection of
parameters of a network, which we call a unit. The lowest level of hierarchy in
a deep virtual network is a unit, and higher levels of hierarchy contain lower
levels' units and other additional units. Given a budget on the number of
parameters, a different level of a deep virtual network can be chosen to
perform the task. A unit can be shared by different DVNs, allowing multiple
DVNs in a single network. In addition, shared units provide assistance to the
target task with additional knowledge learned from another tasks. This
cooperative configuration of DVNs makes it possible to handle different tasks
in a memory-aware manner. Our experiments show that the proposed method
outperforms existing approaches for multiple tasks. Notably, ours is more
efficient than others as it allows memory-aware inference for all tasks.Comment: CVPR 201
- …