222 research outputs found
Slow and fast micro-field components in warm and dense hydrogen plasmas
The aim of this work is the investigation of the statistical properties of
local electric fields in an ion-electron two component plasmas for coupled
conditions. The stochastic fields at a charged or at a neutral point in plasmas
involve both slow and fast fluctuation characteristics. The statistical study
of these local fields based on a direct time average is done for the first
time. For warm and dense plasma conditions, typically , , well controlled molecular dynamics (MD)
simulations of neutral hydrogen, protons and electrons have been carried out.
Relying on these \textit{ab initio} MD calculations this work focuses on an
analysis of the concepts of statistically independent slow and fast local field
components, based on the consideration of a time averaged electric field. Large
differences are found between the results of these MD simulations and
corresponding standard results based on static screened fields. The effects
discussed are of importance for physical phenomena connected with stochastic
electric field fluctuations, e.g., for spectral line broadening in dense
plasmas.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
Systematic model behavior of adsorption on flat surfaces
A low density film on a flat surface is described by an expansion involving
the first four virial coefficients. The first coefficient (alone) yields the
Henry's law regime, while the next three correct for the effects of
interactions. The results permit exploration of the idea of universal
adsorption behavior, which is compared with experimental data for a number of
systems
Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics
Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλ 2 las. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and by protondeflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics
Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement
A transcriptomics and proteomics approach was employed to study the expression changes associated with p-hydroxybenzoate production by the engineered Pseudomonas putida strain S12palB1. To establish p-hydroxybenzoate production, phenylalanine-tyrosine ammonia lyase (pal/tal) was introduced to connect the tyrosine biosynthetic and p-coumarate degradation pathways. In agreement with the efficient p-hydroxybenzoate production, the tyrosine biosynthetic and p-coumarate catabolic pathways were upregulated. Also many transporters were differentially expressed, one of which—a previously uncharacterized multidrug efflux transporter with locus tags PP1271-PP1273—was found to be associated with p-hydroxybenzoate export. In addition to tyrosine biosynthesis, also tyrosine degradative pathways were upregulated. Eliminating the most prominent of these resulted in a 22% p-hydroxybenzoate yield improvement. Remarkably, the upregulation of genes contributing to p-hydroxybenzoate formation was much higher in glucose than in glycerol-cultured cells
Research Trends and Future Perspectives in Marine Biomimicking Robotics
Mechatronic and soft robotics are taking inspiration from the animal kingdom to create new high-performance robots. Here, we focused on marine biomimetic research and used innovative bibliographic statistics tools, to highlight established and emerging knowledge domains. A total of 6980 scientific publications retrieved from the Scopus database (1950–2020), evidencing a sharp research increase in 2003–2004. Clustering analysis of countries collaborations showed two major Asian-North America and European clusters. Three significant areas appeared: (i) energy provision, whose advancement mainly relies on microbial fuel cells, (ii) biomaterials for not yet fully operational soft-robotic solutions; and finally (iii), design and control, chiefly oriented to locomotor designs. In this scenario, marine biomimicking robotics still lacks solutions for the long-lasting energy provision, which presently hinders operation autonomy. In the research environment, identifying natural processes by which living organisms obtain energy is thus urgent to sustain energy-demanding tasks while, at the same time, the natural designs must increasingly inform to optimize energy consumption
The epidemiology of malignant mesothelioma in women: Gender differences and modalities of asbestos exposure
INTRODUCTION:
The epidemiology of gender differences for mesothelioma incidence has been rarely discussed in national case lists. In Italy an epidemiological surveillance system (ReNaM) is working by the means of a national register.
METHODS:
Incident malignant mesothelioma (MM) cases in the period 1993 to 2012 were retrieved from ReNaM. Gender ratio by age class, period of diagnosis, diagnostic certainty, morphology and modalities of asbestos exposure has been analysed using exact tests for proportion. Economic activity sectors, jobs and territorial distribution of mesothelioma cases in women have been described and discussed. To perform international comparative analyses, the gender ratio of mesothelioma deaths was calculated by country from the WHO database and the correlation with the mortality rates estimated.
RESULTS:
In the period of study a case list of 21 463 MMs has been registered and the modalities of asbestos exposure have been investigated for 16 458 (76.7%) of them. The gender ratio (F/M) was 0.38 and 0.70 (0.14 and 0.30 for occupationally exposed subjects only) for pleural and peritoneal cases respectively. Occupational exposures for female MM cases occurred in the chemical and plastic industry, and mainly in the non-asbestos textile sector. Gender ratio proved to be inversely correlated with mortality rate among countries.
CONCLUSIONS:
The consistent proportion of mesothelioma cases in women in Italy is mainly due to the relevant role of non-occupational asbestos exposures and the historical presence of the female workforce in several industrial settings. Enhancing the awareness of mesothelioma aetiology in women could support the effectiveness of welfare system and prevention policies
Recommended from our members
Experiments on hot and dense laser-produced plasmas
Plasmas generated by irradiating targets with {approx}20 kJ of laser energy are routinely created in inertial confinement fusion research. X-ray spectroscopy provides one of the few methods for diagnosing the electron temperature and electron density. For example, electron densities approaching 10{sup 24} cm{sup -3} have been diagnosed by spectral linewidths. However, the accuracy of the spectroscopic diagnostics depends on the population kinetics, the radiative transfer, and the line shape calculations. Analysis for the complex line transitions has recently been improved and accelerated by the use of a database where detailed calculations can be accessed rapidly and interactively. Examples of data from Xe and Ar doped targets demonstrate the current analytic methods. First we will illustrate complications that arise from the presence of a multitude of underlying spectral lines. Then, we will consider the Ar He-like 1s{sup 2}({sup 1}S{sub 0}) - 1s3p({sup 1}P{sub 0}) transition where ion dynamic effects may affect the profile. Here, the plasma conditions are such that the static ion microfield approximation is no longer valid; therefore in addition to the width, the details of the line shape can be used to provide additional information. We will compare the data to simulations and discuss the possible pitfalls involved in demonstrating the effect of ion dynamics on lineshapes
Design, fabrication and control of soft robots
Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.National Science Foundation (U.S.) (Grant IIS-1226883
Epidemiological patterns of asbestos exposure and spatial clusters of incident cases of malignant mesothelioma from the Italian national registry
Abstract
BACKGROUND:
Previous ecological spatial studies of malignant mesothelioma cases, mostly based on mortality data, lack reliable data on individual exposure to asbestos, thus failing to assess the contribution of different occupational and environmental sources in the determination of risk excess in specific areas. This study aims to identify territorial clusters of malignant mesothelioma through a Bayesian spatial analysis and to characterize them by the integrated use of asbestos exposure information retrieved from the Italian national mesothelioma registry (ReNaM).
METHODS:
In the period 1993 to 2008, 15,322 incident cases of all-site malignant mesothelioma were recorded and 11,852 occupational, residential and familial histories were obtained by individual interviews. Observed cases were assigned to the municipality of residence at the time of diagnosis and compared to those expected based on the age-specific rates of the respective geographical area. A spatial cluster analysis was performed for each area applying a Bayesian hierarchical model. Information about modalities and economic sectors of asbestos exposure was analyzed for each cluster.
RESULTS:
Thirty-two clusters of malignant mesothelioma were identified and characterized using the exposure data. Asbestos cement manufacturing industries and shipbuilding and repair facilities represented the main sources of asbestos exposure, but a major contribution to asbestos exposure was also provided by sectors with no direct use of asbestos, such as non-asbestos textile industries, metal engineering and construction. A high proportion of cases with environmental exposure was found in clusters where asbestos cement plants were located or a natural source of asbestos (or asbestos-like) fibers was identifiable. Differences in type and sources of exposure can also explain the varying percentage of cases occurring in women among clusters.
CONCLUSIONS:
Our study demonstrates shared exposure patterns in territorial clusters of malignant mesothelioma due to single or multiple industrial sources, with major implications for public health policies, health surveillance, compensation procedures and site remediation programs
- …