6,420 research outputs found
Universal scaling relations in molecular superconductors
Scaling relations between the superconducting transition temperature , the superfluid stiffness and the normal state conductivity
are identified within the class of molecular
superconductors. These new scaling properties hold as varies over
two orders of magnitude for materials with differing dimensionality and
contrasting molecular structure, and are dramatically different from the
equivalent scaling properties observed within the family of cuprate
superconductors. These scaling relations place strong constraints on theories
for molecular superconductivity.Comment: 4 pages, 4 figure
Quantum Topological Excitations: from the Sawtooth Lattice to the Heisenberg Chain
The recently elucidated structure of the delafossite YCuO reveals a
Cu-O network with nearly independent chains having different
interactions between the spins. Motivated by this result, we study the
chain for various ratios of the base-base and
base-vertex interactions. By exact diagonalization and extrapolation, we show
that the elementary excitation spectrum, which (within numerical error) is the
same for total spins and 1, has a gap only in the interval
. The gap is dispersionless
for , but has increasing -dependence as moves away from unity, related to the instability of dimers in
the ground state.Comment: 4 pages, 6 figures (revtex twocolumn
Multiwavelength study of Cygnus A IV. Proper motion and location of the nucleus
Context. Cygnus A, as the nearest powerful FR II radio galaxy, plays an
important role in understanding jets and their impact on the surrounding
intracluster medium. Aims. To explain why the nucleus is observed superposed
onto the eastern lobe rather than in between the two lobes, and why the jet and
counterjet are non-colinear. Methods. We made a comparative study of the radio
images at different frequencies of Cygnus A, in combination with the published
results on the radial velocities in the Cygnus A cluster. Results. From the
morphology of the inner lobes we conclude that the lobes are not interacting
with one another, but are well separated, even at low radio frequencies. We
explain the location of the nucleus as the result of the proper motion of the
galaxy through the cluster. The required proper motion is of the same order of
magnitude as the radial velocity offset of Cygnus A with the sub-cluster it
belongs to. The proper motion of the galaxy through the cluster likely also
explains the non-co-linearity of the jet and counterjet.Comment: Accepted for publication in A&A, 8 pages, 4 figure
Finite Temperature Behavior of Small Silicon and Tin Clusters: An Ab Initio Molecular Dynamics Study
The finite temperature behavior of small Silicon (Si, Si, and
Si) and Tin (Sn and Sn) clusters is studied using
isokinetic Born-Oppenheimer molecular dynamics. The lowest equilibrium
structures of all the clusters are built upon a highly stable tricapped
trigonal prism unit which is seen to play a crucial role in the finite
temperature behavior of these clusters. Thermodynamics of small tin clusters
(Sn and Sn) is revisited in light of the recent experiments on
tin clusters of sizes 18-21 [G. A. Breaux et. al. Phys. Rev. B {\bf 71} 073410
(2005)]. We have calculated heat capacities using multiple histogram technique
for Si, Sn and Si clusters. Our calculated specific heat
curves have a main peak around 2300 K and 2200 K for Si and Sn
clusters respectively. However, various other melting indicators such as root
mean square bond length fluctuations, mean square displacements show that
diffusive motion of atoms within the cluster begins around 650 K. The finite
temperature behavior of Si and Sn is dominated by isomerization
and it is rather difficult to discern the temperature range for transition
region. On the other hand, Si does show a liquid like behavior over a
short temperature range followed by the fragmentation observed around 1800 K.
Finite temperature behavior of Si and Sn show that these clusters
do not melt but fragment around 1200 K and 650 K respectively.Comment: 9 figure
The radio luminosity function of radio-loud quasars from the 7C Redshift Survey
We present a complete sample of 24 radio-loud quasars (RLQs) from the new 7C
Redshift Survey. Every quasar with a low-frequency (151 MHz) radio flux-density
S_151 > 0.5 Jy in two regions of the sky covering 0.013 sr is included; 23 of
these have sufficient extended flux to meet the selection criteria, 18 of these
have steep radio spectra (hereafter denoted as SSQs). The key advantage of this
sample over most samples of RLQs is the lack of an optical magnitude limit. By
combining the 7C and 3CRR samples, we have investigated the properties of RLQs
as a function of redshift z and radio luminosity L_151.
We derive the radio luminosity function (RLF) of RLQs and find that the data
are well fitted by a single power-law with slope alpha_1=1.9. We find that
there must be a break in the RLQ RLF at log_10(L_151 / W Hz^-1 sr^-1) < 27, in
order for the models to be consistent with the 7C and 6C source counts. The
z-dependence of the RLF follows a one-tailed gaussian which peaks at z=1.7. We
find no evidence for a decline in the co-moving space density of RLQs at higher
redshifts.
A positive correlation between the radio and optical luminosities of SSQs is
observed, confirming a result of Serjeant et al. (1998). We are able to rule
out this correlation being due to selection effects or biases in our combined
sample. The radio-optical correlation and best-fit model RLF enable us to
estimate the distribution of optical magnitudes of quasars in samples selected
at low radio frequencies. We conclude that for samples with S_151 < 1 Jy one
must use optical data significantly deeper than the POSS-I limit (R approx 20),
in order to avoid severe incompleteness.Comment: 28 pages with 13 figures. To appear in MNRA
Field-theory calculation of the electric dipole moment of the neutron and paramagnetic atoms
Electric dipole moments (edms) of bound states that arise from the
constituents having edms are studied with field-theoretic techniques. The
systems treated are the neutron and a set of paramagnetic atoms. In the latter
case it is well known that the atomic edm differs greatly from the electron edm
when the internal electric fields of the atom are taken into account. In the
nonrelativistic limit these fields lead to a complete suppression, but for
heavy atoms large enhancement factors are present. A general bound-state field
theory approach applicable to both the neutron and paramagnetic atoms is set
up. It is applied first to the neutron, treating the quarks as moving freely in
a confining spherical well. It is shown that the effect of internal electric
fields is small in this case. The atomic problem is then revisited using
field-theory techniques in place of the usual Hamiltonian methods, and the
atomic enhancement factor is shown to be consistent with previous calculations.
Possible application of bound-state techniques to other sources of the neutron
edm is discussed.Comment: 21 pages, 5 figure
The effects of entry on incumbent innovation and productivity
How does firm entry affect innovation incentives and productivity growth in incumbent firms? Micro-data suggests that there is heterogeneity across industries--incumbents in technologically advanced industries react positively to foreign firm entry, but not in laggard industries. To explain this pattern, we introduce entry into a Schumpeterian growth model with multiple sectors which differ by their distance to the technological frontier. We show that technologically advanced entry threat spurs innovation incentives in sectors close to the technological frontier--successful innovation allows incumbents to prevent entry. In laggard sectors it discourages innovation--increased entry threat reduces incumbents' expected rents from innovating. We find that the empirical patterns hold using rich micro-level productivity growth and patent panel data for the UK, and controlling for the endogeneity of entry by exploiting the large number of policy reforms undertaken during the Thatcher era
- …