12,459 research outputs found

### Angular momentum conservation for uniformly expanding flows

Angular momentum has recently been defined as a surface integral involving an
axial vector and a twist 1-form, which measures the twisting around of
space-time due to a rotating mass. The axial vector is chosen to be a
transverse, divergence-free, coordinate vector, which is compatible with any
initial choice of axis and integral curves. Then a conservation equation
expresses rate of change of angular momentum along a uniformly expanding flow
as a surface integral of angular momentum densities, with the same form as the
standard equation for an axial Killing vector, apart from the inclusion of an
effective energy tensor for gravitational radiation.Comment: 5 revtex4 pages, 3 eps figure

### Unified first law of black-hole dynamics and relativistic thermodynamics

A unified first law of black-hole dynamics and relativistic thermodynamics is
derived in spherically symmetric general relativity. This equation expresses
the gradient of the active gravitational energy E according to the Einstein
equation, divided into energy-supply and work terms. Projecting the equation
along the flow of thermodynamic matter and along the trapping horizon of a
blackhole yield, respectively, first laws of relativistic thermodynamics and
black-hole dynamics. In the black-hole case, this first law has the same form
as the first law of black-hole statics, with static perturbations replaced by
the derivative along the horizon. There is the expected term involving the area
and surface gravity, where the dynamic surface gravity is defined as in the
static case but using the Kodama vector and trapping horizon. This surface
gravity vanishes for degenerate trapping horizons and satisfies certain
expected inequalities involving the area and energy. In the thermodynamic case,
the quasi-local first law has the same form, apart from a relativistic factor,
as the classical first law of thermodynamics, involving heat supply and
hydrodynamic work, but with E replacing the internal energy. Expanding E in the
Newtonian limit shows that it incorporates the Newtonian mass, kinetic energy,
gravitational potential energy and thermal energy. There is also a weak type of
unified zeroth law: a Gibbs-like definition of thermal equilibrium requires
constancy of an effective temperature, generalising the Tolman condition and
the particular case of Hawking radiation, while gravithermal equilibrium
further requires constancy of surface gravity. Finally, it is suggested that
the energy operator of spherically symmetric quantum gravity is determined by
the Kodama vector, which encodes a dynamic time related to E.Comment: 18 pages, TeX, expanded somewhat, to appear in Class. Quantum Gra

### On the Definition of Averagely Trapped Surfaces

Previously suggested definitions of averagely trapped surfaces are not
well-defined properties of 2-surfaces, and can include surfaces in flat
space-time. A natural definition of averagely trapped surfaces is that the
product of the null expansions be positive on average. A surface is averagely
trapped in the latter sense if and only if its area $A$ and Hawking mass $M$
satisfy the isoperimetric inequality $16\pi M^2 > A$, with similar inequalities
existing for other definitions of quasi-local energy.Comment: 4 page

### Dilatonic wormholes: construction, operation, maintenance and collapse to black holes

The CGHS two-dimensional dilaton gravity model is generalized to include a
ghost Klein-Gordon field, i.e. with negative gravitational coupling. This
exotic radiation supports the existence of static traversible wormhole
solutions, analogous to Morris-Thorne wormholes. Since the field equations are
explicitly integrable, concrete examples can be given of various dynamic
wormhole processes, as follows. (i) Static wormholes are constructed by
irradiating an initially static black hole with the ghost field. (ii) The
operation of a wormhole to transport matter or radiation between the two
universes is described, including the back-reaction on the wormhole, which is
found to exhibit a type of neutral stability. (iii) It is shown how to maintain
an operating wormhole in a static state, or return it to its original state, by
turning up the ghost field. (iv) If the ghost field is turned off, either
instantaneously or gradually, the wormhole collapses into a black hole.Comment: 9 pages, 7 figure

### BOUNDARY CONDITIONS FOR THE SCALAR FIELD IN THE PRESENCE OF SIGNATURE CHANGE

We show that, contrary to recent criticism, our previous work yields a
reasonable class of solutions for the massless scalar field in the presence of
signature change.Comment: 11 pages, Plain Tex, no figure

### Quasi-local first law of black-hole dynamics

A property well known as the first law of black hole is a relation among
infinitesimal variations of parameters of stationary black holes. We consider a
dynamical version of the first law, which may be called the first law of black
hole dynamics. The first law of black hole dynamics is derived without assuming
any symmetry or any asymptotic conditions. In the derivation, a definition of
dynamical surface gravity is proposed. In spherical symmetry it reduces to that
defined recently by one of the authors (SAH).Comment: Latex, 8 pages; version to appear in Class. Quantum Gra

### Gravitational radiation from dynamical black holes

An effective energy tensor for gravitational radiation is identified for
uniformly expanding flows of the Hawking mass-energy. It appears in an energy
conservation law expressing the change in mass due to the energy densities of
matter and gravitational radiation, with respect to a Killing-like vector
encoding a preferred flow of time outside a black hole. In a spin-coefficient
formulation, the components of the effective energy tensor can be understood as
the energy densities of ingoing and outgoing, transverse and longitudinal
gravitational radiation. By anchoring the flow to the trapping horizon of a
black hole in a given sequence of spatial hypersurfaces, there is a locally
unique flow and a measure of gravitational radiation in the strong-field
regime.Comment: 5 revtex4 pages. Additional comment

### Construction and enlargement of traversable wormholes from Schwarzschild black holes

Analytic solutions are presented which describe the construction of a
traversable wormhole from a Schwarzschild black hole, and the enlargement of
such a wormhole, in Einstein gravity. The matter model is pure radiation which
may have negative energy density (phantom or ghost radiation) and the
idealization of impulsive radiation (infinitesimally thin null shells) is
employed.Comment: 22 pages, 7 figure

### A Cosmological Constant Limits the Size of Black Holes

In a space-time with cosmological constant $\Lambda>0$ and matter satisfying
the dominant energy condition, the area of a black or white hole cannot exceed
$4\pi/\Lambda$. This applies to event horizons where defined, i.e. in an
asymptotically deSitter space-time, and to outer trapping horizons (cf.
apparent horizons) in any space-time. The bound is attained if and only if the
horizon is identical to that of the degenerate `Schwarzschild-deSitter'
solution. This yields a topological restriction on the event horizon, namely
that components whose total area exceeds $4\pi/\Lambda$ cannot merge. We
discuss the conjectured isoperimetric inequality and implications for the
cosmic censorship conjecture.Comment: 10 page

### Production and decay of evolving horizons

We consider a simple physical model for an evolving horizon that is strongly
interacting with its environment, exchanging arbitrarily large quantities of
matter with its environment in the form of both infalling material and outgoing
Hawking radiation. We permit fluxes of both lightlike and timelike particles to
cross the horizon, and ask how the horizon grows and shrinks in response to
such flows. We place a premium on providing a clear and straightforward
exposition with simple formulae.
To be able to handle such a highly dynamical situation in a simple manner we
make one significant physical restriction, that of spherical symmetry, and two
technical mathematical restrictions: (1) We choose to slice the spacetime in
such a way that the space-time foliations (and hence the horizons) are always
spherically symmetric. (2) Furthermore we adopt Painleve-Gullstrand coordinates
(which are well suited to the problem because they are nonsingular at the
horizon) in order to simplify the relevant calculations.
We find particularly simple forms for surface gravity, and for the first and
second law of black hole thermodynamics, in this general evolving horizon
situation. Furthermore we relate our results to Hawking's apparent horizon,
Ashtekar et al's isolated and dynamical horizons, and Hayward's trapping
horizons. The evolving black hole model discussed here will be of interest,
both from an astrophysical viewpoint in terms of discussing growing black
holes, and from a purely theoretical viewpoint in discussing black hole
evaporation via Hawking radiation.Comment: 25 pages, uses iopart.cls V2: 5 references added; minor typos; V3:
some additional clarifications, additional references, additional appendix on
the Viadya spacetime. This version published in Classical and Quiantum
Gravit

- â€¦