31,654 research outputs found

    Dependence of the Inner DM Profile on the Halo Mass

    Get PDF
    I compare the density profile of dark matter (DM) halos in cold dark matter (CDM) N-body simulations with 1 Mpc, 32 Mpc, 256 Mpc and 1024 Mpc box sizes. In dimensionless units the simulations differ only for the initial power spectrum of density perturbations. I compare the profiles when the most massive halos are composed of about 10^5 DM particles. The DM density profiles of the halos in the 1 Mpc box show systematically shallower cores with respect to the corresponding halos in the 32 Mpc simulation that have masses, M_{dm}, typical of the Milky Way and are fitted by a NFW profile. The DM density profiles of the halos in the 256 Mpc box are consistent with having steeper cores than the corresponding halos in the 32 Mpc simulation, but higher mass resolution simulations are needed to strengthen this result. Combined, these results indicate that the density profile of DM halos is not universal, presenting shallower cores in dwarf galaxies and steeper cores in clusters. Physically the result sustains the hypothesis that the mass function of the accreting satellites determines the inner slope of the DM profile. In comoving coordinates, r, the profile \rho_{dm} \propto 1/(X^\alpha(1+X)^{3-\alpha}), with X=c_\Delta r/r_\Delta, r_\Delta is the virial radius and \alpha =\alpha(M_{dm}), provides a good fit to all the DM halos from dwarf galaxies to clusters at any redshift with the same concentration parameter c_\Delta ~ 7. The slope, \gamma, of the outer parts of the halo appears to depend on the acceleration of the universe: when the scale parameter is a=(1+z)^{-1} < 1, the slope is \gamma ~ 3 as in the NFW profile, but \gamma ~ 4 at a > 1 when \Omega_\Lambda ~ 1 and the universe is inflating.[abridged]Comment: Accepted for publication in MNRAS. 13 pages, including 11 figures and 2 tables. The revised version has an additional discussion section and work on the velocity dispersion anisotrop

    Target Space Duality between Simple Compact Lie Groups and Lie Algebras under the Hamiltonian Formalism: I. Remnants of Duality at the Classical Level

    Get PDF
    It has been suggested that a possible classical remnant of the phenomenon of target-space duality (T-duality) would be the equivalence of the classical string Hamiltonian systems. Given a simple compact Lie group GG with a bi-invariant metric and a generating function Γ\Gamma suggested in the physics literature, we follow the above line of thought and work out the canonical transformation Φ\Phi generated by Γ\Gamma together with an \Ad-invariant metric and a B-field on the associated Lie algebra g\frak g of GG so that GG and g\frak g form a string target-space dual pair at the classical level under the Hamiltonian formalism. In this article, some general features of this Hamiltonian setting are discussed. We study properties of the canonical transformation Φ\Phi including a careful analysis of its domain and image. The geometry of the T-dual structure on g\frak g is lightly touched.Comment: Two references and related comments added, also some typos corrected. LaTeX and epsf.tex, 36 pages, 4 EPS figures included in a uuencoded fil

    Making the hyper--K\"ahler structure of N=2 quantum string manifest

    Full text link
    We show that the Lorentz covariant formulation of N=2 string in a curved space reveals an explicit hyper--K\"ahler structure. Apart from the metric, the superconformal currents couple to a background two--form. By superconformal symmetry the latter is constrained to be holomorphic and covariantly constant and allows one to construct three complex structures obeying a (pseudo)quaternion algebra.Comment: 8 pages, no figures, PACS: 04.60.Ds; 11.30.Pb, Keywords: N=2 string, hyper-K\"ahler geometry. Presentation improved, references added. The version to appear in PR

    Is the Large Magellanic Cloud a Large Microlensing Cloud?

    Get PDF
    An expression is provided for the self-lensing optical depth of the thin LMC disk surrounded by a shroud of stars at larger scale heights. The formula is written in terms of the vertical velocity dispersion of the thin disk population. If tidal forcing causes 1-5 % of the disk mass to have a height larger than 6 kpc and 10-15 % to have a height above 3 kpc, then the self-lensing optical depth of the LMC is 0.71.9×1070.7 - 1.9 \times 10^{-7}, which is within the observational uncertainties. The shroud may be composed of bright stars provided they are not in stellar hydrodynamical equilibrium. Alternatively, the shroud may be built from low mass stars or compact objects, though then the self-lensing optical depths are overestimates of the true optical depth by a factor of roughly 3. The distributions of timescales of the events and their spatial variation across the face of the LMC disk offer possibilities of identifying the dominant lens population. In propitious circumstances, an experiment lifetime of less than 5 years is sufficient to decide between the competing claims of Milky Way halos and LMC lenses. However, LMC disks can sometimes mimic the microlensing properties of Galactic halos for many years and then decades of survey work are needed. In this case observations of parallax or binary caustic events offer the best hope for current experiments to deduce the lens population. The difficult models to distinguish are Milky Way halos in which the lens fraction is low (< 10 %) and fattened LMC disks composed of lenses with a typical mass of low luminosity stars or greater. A next-generation wide-area microlensing survey, such as the proposed ``SuperMACHO'' experiment, will be able to distinguish even these difficult models with just a year or two of data.Comment: 25 pages, 4 figures, The Astrophysical Journal (in press

    Exact static soliton solutions of 3+1 dimensional integrable theory with nonzero Hopf numbers

    Get PDF
    In this paper we construct explicitly an infinite number of Hopfions (static, soliton solutions with non-zero Hopf topological charges) within the recently proposed 3+1-dimensional, integrable and relativistically invariant field theory. Two integers label the family of Hopfions we have found. Their product is equal to the Hopf charge which provides a lower bound to the soliton's finite energy. The Hopfions are constructed explicitly in terms of the toroidal coordinates and shown to have a form of linked closed vortices.Comment: LaTeX, 7 pg

    Synthesis of SmFeAsO by an Easy and Versatile Route and its Physical Property Characterization

    Get PDF
    We report synthesis, structure, electrical transport and heat capacity of SmFeAsO. The title compound is synthesized by one-step encapsulation of stoichiometric FeAs, Sm, and Sm2O3 in an evacuated (10-5 Torr) quartz tube by prolong (72 hours) annealing at 1100oC. The as synthesized compound is crystallized in tetragonal structure with P4/nmm space group having lattice parameters a = 3.93726(33) A and c = 8.49802(07) A. The resistance (R-T) measurements on the compound exhibited ground state spin-density-wave (SDW)-like metallic steps below 140 K. Heat capacity CP(T) measurements on the title compound, showed an anomaly at around 140 K, which is reminiscent of the SDW ordering of the compound. At lower temperatures the CP(T) shows a clear peak at around 4.5 K. At lower temperature below 20 K, Cp(T) is also measured under an applied field of 7 Tesla. It is concluded that the CP(T) peak at 4.5 K is due to the anti-ferromagnetic(AFM) ordering of Sm3+ spins. These results are in confirmation with ordering of Sm in Sm2-xCexCuO4.Comment: 9 pages Text + Figs Contact Author ([email protected]

    Invariant Regularization of Anomaly-Free Chiral Theories

    Get PDF
    We present a generalization of the Frolov-Slavnov invariant regularization scheme for chiral fermion theories in curved spacetimes. local gauge symmetries of the theory, including local Lorentz invariance. The perturbative scheme works for arbitrary representations which satisfy the chiral gauge anomaly and the mixed Lorentz-gauge anomaly cancellation conditions. Anomalous theories on the other hand manifest themselves by having divergent fermion loops which remain unregularized by the scheme. Since the invariant scheme is promoted to also include local Lorentz invariance, spectator fields which do not couple to gravity cannot be, and are not, introduced. Furthermore, the scheme is truly chiral (Weyl) in that all fields, including the regulators, are left-handed; and only the left-handed spin connection is needed. The scheme is, therefore, well suited for the study of the interaction of matter with all four known forces in a completely chiral fashion. In contrast with the vectorlike formulation, the degeneracy between the Adler-Bell-Jackiw current and the fermion number current in the bare action is preserved by the chiral regularization scheme.Comment: 28pgs, LaTeX. Typos corrected. Further remarks on singlet current

    Scale Factor Duality: A Quantum Cosmological Approach

    Get PDF
    We consider the minisuperspace model arising from the lowest order string effective action containing the graviton and the dilaton and study solutions of the resulting Wheeler-Dewitt equation. The scale factor duality symmetry is discussed in the context of our quantum cosmological model.Comment: 10 pages, plain tex, uses panda.tex (appended

    Feynman Path Integral on the Noncommutative Plane

    Full text link
    We formulate Feynman path integral on a non commutative plane using coherent states. The propagator for a free particle exhibits UV cut-off induced by the parameter of non commutativity.Comment: 7pages, latex 2e, no figures. Accepted for publication on J.Phys.
    corecore