6 research outputs found

    Effect of a magnetic field on molecule-solvent angular momentum transfer

    Full text link
    Recently it was shown that a molecule rotating in a quantum solvent can be described in terms of the `angulon' quasiparticle [Phys. Rev. Lett. 118, 095301 (2017)]. Here we extend the angulon theory to the case of molecules possessing an additional spin-1/2 degree of freedom and study the behavior of the system in the presence of a static magnetic field. We show that exchange of angular momentum between the molecule and the solvent can be altered by the field, even though the solvent itself is non-magnetic. In particular, we demonstrate a possibility to control resonant emission of phonons with a given angular momentum using a magnetic field.Comment: 8+5 pages; 4 figures; accepted versio

    IST Austria Thesis

    Get PDF
    In this Thesis, I study composite quantum impurities with variational techniques, both inspired by machine learning as well as fully analytic. I supplement this with exploration of other applications of machine learning, in particular artificial neural networks, in many-body physics. In Chapters 3 and 4, I study quasiparticle systems with variational approach. I derive a Hamiltonian describing the angulon quasiparticle in the presence of a magnetic field. I apply analytic variational treatment to this Hamiltonian. Then, I introduce a variational approach for non-additive systems, based on artificial neural networks. I exemplify this approach on the example of the polaron quasiparticle (Fröhlich Hamiltonian). In Chapter 5, I continue using artificial neural networks, albeit in a different setting. I apply artificial neural networks to detect phases from snapshots of two types physical systems. Namely, I study Monte Carlo snapshots of multilayer classical spin models as well as molecular dynamics maps of colloidal systems. The main type of networks that I use here are convolutional neural networks, known for their applicability to image data

    Detecting composite orders in layered models via machine learning

    Get PDF
    Determining the phase diagram of systems consisting of smaller subsystems 'connected' via a tunable coupling is a challenging task relevant for a variety of physical settings. A general question is whether new phases, not present in the uncoupled limit, may arise. We use machine learning and a suitable quasidistance between different points of the phase diagram to study layered spin models, in which the spin variables constituting each of the uncoupled systems (to which we refer as layers) are coupled to each other via an interlayer coupling. In such systems, in general, composite order parameters involving spins of different layers may emerge as a consequence of the interlayer coupling. We focus on the layered Ising and Ashkin–Teller models as a paradigmatic case study, determining their phase diagram via the application of a machine learning algorithm to the Monte Carlo data. Remarkably our technique is able to correctly characterize all the system phases also in the case of hidden order parameters, i.e. order parameters whose expression in terms of the microscopic configurations would require additional preprocessing of the data fed to the algorithm. We correctly retrieve the three known phases of the Ashkin–Teller model with ferromagnetic couplings, including the phase described by a composite order parameter. For the bilayer and trilayer Ising models the phases we find are only the ferromagnetic and the paramagnetic ones. Within the approach we introduce, owing to the construction of convolutional neural networks, naturally suitable for layered image-like data with arbitrary number of layers, no preprocessing of the Monte Carlo data is needed, also with regard to its spatial structure. The physical meaning of our results is discussed and compared with analytical data, where available. Yet, the method can be used without any a priori knowledge of the phases one seeks to find and can be applied to other models and structures

    Steam turbine stress control using NARX neural network

    No full text
    Considered here is concept of steam turbine stress control, which is based on Nonlinear AutoRegressive neural networks with eXogenous inputs. Using NARX neural networks,whichwere trained based on experimentally validated FE model allows to control stresses in protected thickwalled steam turbine element with FE model quality. Additionally NARX neural network, which were trained base on FE model, includes: nonlinearity of steam expansion in turbine steam path during transients, nonlinearity of heat exchange inside the turbine during transients and nonlinearity of material properties during transients. In this article NARX neural networks stress controls is shown as an example of HP rotor of 18K390 turbine. HP part thermodynamic model as well as heat exchange model in vicinity of HP rotor,whichwere used in FE model of the HP rotor and the HP rotor FE model itself were validated based on experimental data for real turbine transient events. In such a way it is ensured that NARX neural network behave as real HP rotor during steam turbine transient events

    Artificial neural network states for non-additive systems

    No full text
    Methods inspired from machine learning have recently attracted great interest in the computational study of quantum many-particle systems. So far, however, it has proven challenging to deal with microscopic models in which the total number of particles is not conserved. To address this issue, we propose a new variant of neural network states, which we term neural coherent states. Taking the Fröhlich impurity model as a case study, we show that neural coherent states can learn the ground state of non-additive systems very well. In particular, we observe substantial improvement over the standard coherent state estimates in the most challenging intermediate coupling regime. Our approach is generic and does not assume specific details of the system, suggesting wide applications

    Detecting composite orders in layered models via machine learning

    Get PDF
    Determining the phase diagram of systems consisting of smaller subsystems 'connected' via a tunable coupling is a challenging task relevant for a variety of physical settings. A general question is whether new phases, not present in the uncoupled limit, may arise. We use machine learning and a suitable quasidistance between different points of the phase diagram to study layered spin models, in which the spin variables constituting each of the uncoupled systems (to which we refer as layers) are coupled to each other via an interlayer coupling. In such systems, in general, composite order parameters involving spins of different layers may emerge as a consequence of the interlayer coupling. We focus on the layered Ising and Ashkin–Teller models as a paradigmatic case study, determining their phase diagram via the application of a machine learning algorithm to the Monte Carlo data. Remarkably our technique is able to correctly characterize all the system phases also in the case of hidden order parameters, i.e. order parameters whose expression in terms of the microscopic configurations would require additional preprocessing of the data fed to the algorithm. We correctly retrieve the three known phases of the Ashkin–Teller model with ferromagnetic couplings, including the phase described by a composite order parameter. For the bilayer and trilayer Ising models the phases we find are only the ferromagnetic and the paramagnetic ones. Within the approach we introduce, owing to the construction of convolutional neural networks, naturally suitable for layered image-like data with arbitrary number of layers, no preprocessing of the Monte Carlo data is needed, also with regard to its spatial structure. The physical meaning of our results is discussed and compared with analytical data, where available. Yet, the method can be used without any a priori knowledge of the phases one seeks to find and can be applied to other models and structures.ISSN:1367-263
    corecore