28 research outputs found

    A tracheoinnominate artery fistula presenting with massive hemorrhage in a 13-year-old boy

    Get PDF
    Despite its rarity, a tracheoinnominate artery fistula can result in catastrophic hemorrhage. Here, we describe a case of a 13-year-old boy with such a condition following tracheostomy. After identification of pulsatile bleeding from the tracheostoma, temporary control of hemorrhage was obtained using hyperinflation of the tracheostomy tube cuff. Subsequently, a lesion indicative of a tracheoinnominate artery fistula was found on a computed tomography scan, and the diagnosis was confirmed at surgery. After surgery, he was discharged with no recurrent bleeding. This case highlights the importance of high suspicion and prompt management of tracheoinnominate artery fistula

    Isolation and Expression Profile of the Ca2+-Activated Chloride Channel-like Membrane Protein 6 Gene in Xenopus laevis

    Get PDF
    To clone the first anion channel from Xenopus laevis (X. laevis), we isolated a calcium-activated chloride channel (CLCA)-like membrane protein 6 gene (CMP6) in X. laevis. As a first step in gene isolation, an expressed sequence tags database was screened to find the partial cDNA fragment. A putative partial cDNA sequence was obtained by comparison with rat CLCAs identified in our laboratory. First stranded cDNA was synthesized by reverse transcription polymerase-chain reaction (RT-PCR) using a specific primer designed for the target cDNA. Repeating the 5' and 3' rapid amplification of cDNA ends, full-length cDNA was constructed from the cDNA pool. The full-length CMP6 cDNA completed via 5'- and 3'-RACE was 2,940 bp long and had an open reading frame (ORF) of 940 amino acids. The predicted 940 polypeptides have four major transmembrane domains and showed about 50% identity with that of rat brain CLCAs in our previously published data. Semi-quantification analysis revealed that CMP6 was most abundantly expressed in small intestine, colon and liver. However, all tissues except small intestine, colon and liver had undetectable levels. This result became more credible after we did real-time PCR quantification for the target gene. In view of all CLCA studies focused on human or murine channels, this finding suggests a hypothetical protein as an ion channel, an X. laevis CLCA

    Utilization of Vertebroplasty/Kyphoplasty in the Management of Compression Fractures: National Trends and Predictors of Vertebroplasty/Kyphoplasty

    Get PDF
    Objective The purpose of this study is to examine the utilization of kyphoplasty/vertebroplasty procedures in the management of compression fractures. With the growing elderly population and the associated increase in rates of osteoporosis, vertebral compression fractures have become a daily encounter for spine surgeons. However, there remains a lack of consensus on the optimal management of this patient population. Methods A retrospective analysis of 91 million longitudinally followed patients from 2016 to 2019 was performed using the PearlDiver Patient Claims Database. Patients with compression fractures were identified using International Classification of Disease, 10th Revision codes, and a subset of patients who received kyphoplasty/vertebroplasty were identified using Common Procedural Terminology codes. Baseline demographic and clinical data between groups were acquired. Multivariable regression analysis was performed to determine predictors of receiving kyphoplasty/vertebroplasty. Results A total of 348,457 patients with compression fractures were identified with 9.2% of patients receiving kyphoplasty/vertebroplasty as their initial treatment. Of these patients, 43.5% underwent additional kyphoplasty/vertebroplasty 30 days after initial intervention. Patients receiving kyphoplasty/vertebroplasty were significantly older (72.2 vs. 67.9, p < 0.05), female, obese, had active smoking status and had higher Elixhauser Comorbidity Index scores. Multivariable analysis demonstrated that female sex, smoking status, and obesity were the 3 strongest predictors of receiving kyphoplasty/vertebroplasty (odds ratio, 1.27, 1.24, and 1.14, respectively). The annual rate of kyphoplasty/vertebroplasty did not change significantly (range, 8%–11%). Conclusion The majority of vertebral compression fractures are managed nonoperatively. However, certain patient factors such as smoking status, obesity, female sex, older age, osteoporosis, and greater comorbidities are predictors of undergoing kyphoplasty/vertebroplasty

    Advanced Glycation End Products Increase Salivary Gland Hypofunction in d-Galactose-Induced Aging Rats and Its Prevention by Physical Exercise

    No full text
    A declined salivary gland function is commonly observed in elderly people. Advanced glycation end products (AGEs) are believed to contribute to the pathogenesis of aging. Although physical exercise is shown to increase various organ functions in human and experimental models, it is not known whether it has a similar effect in the salivary glands. In the present study, we evaluated the AGEs burden in the salivary gland in the aging process and the protective effect of physical exercise on age-related salivary hypofunction. To accelerate the aging process, rats were peritoneally injected with D-galactose for 6 weeks. Young control rats and d-galactose-induced aging rats in the old group were not exercised. The rats in the physical exercise group ran on a treadmill (12 m/min, 60 min/day, 3 days/week for 6 weeks). The results showed that the salivary flow rate and total protein levels in the saliva of the d-galactose-induced aging rats were reduced compared to those of the young control rats. Circulating AGEs in serum and secreted AGEs in saliva increased with d-galactose-induced aging. AGEs also accumulated in the salivary glands of these aging rats. The salivary gland of aging rats showed increased reactive oxygen species (ROS) generation, loss of acinar cells, and apoptosis compared to young control mice. However, physical exercise suppressed all of these age-related salivary changes. Overall, physical exercise could provide a beneficial option for age-related salivary hypofunction

    Polydatin Alleviates Diabetes-Induced Hyposalivation through Anti-Glycation Activity in db/db Mouse

    No full text
    Polydatin (resveratrol-3-O-β-mono-D-glucoside) is a polyphenol that can be easily accessed from peanuts, grapes, and red wine, and is known to have antiglycation, antioxidant, and anti-inflammatory effects. Diabetes mellitus is a very common disease, and diabetic complications are very common complications. The dry mouth symptom is one of the most common oral complaints in patients with diabetes mellitus. Diabetes mellitus is thought to promote hyposalivation. In this study, we aimed to investigate the improvement effect of polydatin on diabetes-induced hyposalivation in db/db mouse model of type 2 diabetes. We examined salivary flow rate, TUNEL assay, PAS staining, and immunohistochemical staining for AGEs, RAGE, HMGB1, 8-OHdG, and AQP5 to evaluate the efficacy of polydatin in the submandibular salivary gland. Diabetic db/db mice had a decreased salivary flow rate and salivary gland weight. The salivary gland of the vehicle-treated db/db mice showed an increased apoptotic cell injury. The AGEs were highly accumulated, and its receptor, RAGE expression was also enhanced. Expressions of HMGB1, an oxidative cell damage marker, and 8-OHdG, an oxidative DNA damage marker, increased greatly. However, polydatin ameliorated this hypofunction of the salivary gland and inhibited diabetes-related salivary cell injury. Furthermore, polydatin improved mucin accumulation, which is used as a damage marker for salivary gland acinar cells, and decreased expression of water channel AQP5 was improved by polydatin. In conclusion, polydatin has a potent protective effect on diabetes-related salivary gland hypofunction through its antioxidant and anti-glycation activities, and its AQP5 upregulation. This result suggests the possibility of the use of polydatin as a therapeutic drug to improve hyposalivation caused by diabetes

    In-Situ Catalytic Fast Pyrolysis of Pinecone over HY Catalysts

    No full text
    The in-situ catalytic fast pyrolysis of pinecone over HY catalysts, HY(30; SiO2/Al2O3), HY(60), and 1% Ni/HY(30), was studied by TGA and Py-GC/MS. Thermal and catalytic TGA indicated that the main decomposition temperature region of pinecone, from 200 to 400 &deg;C, was not changed using HY catalysts. On the other hand, the DTG peak heights were differentiated by the additional use of HY catalysts. Py-GC/MS analysis showed that the efficient conversion of phenols and other oxygenates formed from the pyrolysis of pinecone to aromatic hydrocarbons could be achieved using HY catalysts. Of the HY catalysts assessed, HY(30), showed higher efficiency in the production of aromatic hydrocarbons than HY(60) because of its higher acidity. The aromatic hydrocarbon production was increased further by increasing the pyrolysis temperature from 500 to 600 &deg;C and increasing the amount of catalyst due to the enhanced cracking ability and overall acidity. The use of 1% Ni/HY(30) also increased the amount of monoaromatic hydrocarbons compared to the use of HY(30) due to the additional role of Ni in enhancing the deoxygenation and aromatization of reaction intermediates
    corecore