6,379 research outputs found
Gamow-Teller Strength in the Region of Sn
New calculations are presented for Gamow-Teller beta decay of nuclei near
Sn. Essentially all of the Sn Gamow-Teller decay strength is
predicted to go to a single state at an excitation energy of 1.8 MeV in
In. The first calculations are presented for the decays of neighboring
odd-even and odd-odd nuclei which show, in contrast to Sn, surprisingly
complex and broad Gamow-Teller strength distributions. The results are compared
to existing experimental data and the resulting hindrance factors are
discussed.Comment: 12 pages (latex) and 2 figures available on reques
Penning trap mass measurements on (99-109)$Cd with ISOLTRAP and implications on the rp process
Penning trap mass measurements on neutron-deficient Cd isotopes (99-109)Cd
have been performed with the ISOLTRAP mass spectrometer at ISOLDE/CERN, all
with relative mass uncertainties below 3*10^8. A new mass evaluation has been
performed. The mass of 99Cd has been determined for the first time which
extends the region of accurately known mass values towards the doubly magic
nucleus 100Sn. The implication of the results on the reaction path of the rp
process in stellar X-ray bursts is discussed. In particular, the uncertainty of
the abundance and the overproduction created by the rp-process for the mass A =
99 is demonstrated by reducing the uncertainty of the proton-separation energy
of 100In Sp(100In) by a factor of 2.5.Comment: 14 pages, 9 figure
Beta decay of 71,73Co; probing single particle states approaching doubly magic 78Ni
Low-energy excited states in 71,73Ni populated via the {\beta} decay of
71,73Co were investigated in an experiment performed at the National
Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU).
Detailed analysis led to the construction of level schemes of 71,73Ni, which
are interpreted using systematics and analyzed using shell model calculations.
The 5/2- states attributed to the the f5/2 orbital and positive parity 5/2+ and
7/2+ states from the g9/2 orbital have been identified in both 71,73Ni. In 71Ni
the location of a 1/2- {\beta}-decaying isomer is proposed and limits are
suggested as to the location of the isomer in 73Ni. The location of positive
parity cluster states are also identified in 71,73Ni. Beta-delayed neutron
branching ratios obtained from this data are given for both 71,73Co.Comment: Accepted for publication in PR
Recommended from our members
Experiments with neutron-rich isomeric beams
A review of experimental results obtained on microsecond-isomeric states in neutron-rich nuclei produced in fragmentation reactions and studied with SISSI-Alpha-LISE3 spectrometer system at GANIL Caen is given. The perspectives of experiments based on secondary reactions with isomeric beams are presented
Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces
Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive means for increasing their condensation heat transfer coefficients has potential for significant efficiency enhancements. Here we investigate condensation behavior of a variety of liquids with surface tensions in the range of 12 to 28 mN/m on three types of omniphobic surfaces: smooth oleophobic, re-entrant superomniphobic, and lubricant-impregnated surfaces. We demonstrate that although smooth oleophobic and lubricant-impregnated surfaces can promote dropwise condensation of the majority of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also demonstrate that on the lubricant-impregnated surfaces, the choice of lubricant and underlying surface texture play a crucial role in stabilizing the lubricant and reducing pinning of the condensate. With properly engineered surfaces to promote dropwise condensation of low-surface tension fluids, we demonstrate a four to eight-fold improvement in the heat transfer coefficient.National Science Foundation (U.S.). Graduate Research Fellowship ProgramNational Science Foundation (U.S.) (CAREER Award 0952564)MIT Energy Initiativ
Radioactive decays at limits of nuclear stability
The last decades brought an impressive progress in synthesizing and studying
properties of nuclides located very far from the beta stability line. Among the
most fundamental properties of such exotic nuclides, usually established first,
is the half-life, possible radioactive decay modes, and their relative
probabilities. When approaching limits of nuclear stability, new decay modes
set in. First, beta decays become accompanied by emission of nucleons from
highly excited states of daughter nuclei. Second, when the nucleon separation
energy becomes negative, nucleons start to be emitted from the ground state.
Here, we present a review of the decay modes occurring close to the limits of
stability. The experimental methods used to produce, identify and detect new
species and their radiation are discussed. The current theoretical
understanding of these decay processes is overviewed. The theoretical
description of the most recently discovered and most complex radioactive
process - the two-proton radioactivity - is discussed in more detail.Comment: Review, 68 pages, 39 figure
First observation of the drip line nucleus \u3csup\u3e140\u3c/sup\u3eDy: Identification of a 7 μs K isomer populating the ground state band
A new 7 μs isomer in the drip line nucleus 140Dy was selected from the products of the 54Fe (315 MeV) + 92Mo reaction by a recoil mass spectrometer and studied with recoil-delayed γ-γ coincidences. Five cascading γ transitions were interpreted as the decay of an Iπ = 8- {ν9/2-[514]⊗ ν7/2+[404]} Kisomer (T 1/2 = 7.0(5) μs) via the ground-state band. The probability of proton emission from 141Ho to the 0+ ground state and to the 2+ excited state in 140Dy is discussed
Role of dynamical particle-vibration coupling in reconciliation of the puzzle for spherical proton emitters
It has been observed that decay rate for proton emission from
single particle state is systematically quenched compared with the prediction
of a one dimensional potential model although the same model successfully
accounts for measured decay rates from and states. We
reconcile this discrepancy by solving coupled-channels equations, taking into
account couplings between the proton motion and vibrational excitations of a
daughter nucleus. We apply the formalism to proton emitting nuclei
Re to show that there is a certain range of parameter set of the
excitation energy and the dynamical deformation parameter for the quadrupole
phonon excitation which reproduces simultaneously the experimental decay rates
from the 2, 3 and 1 states in these nuclei.Comment: RevTex, 12 pages, 4 eps figure
- …