34 research outputs found
Elucidation of role of graphene in catalytic designs for electroreduction of oxygen
Graphene is, in principle, a promising material for consideration as
component (support, active site) of electrocatalytic materials, particularly
with respect to reduction of oxygen, an electrode reaction of importance to
low-temperature fuel cell technology. Different concepts of utilization,
including nanostructuring, doping, admixing, preconditioning, modification or
functionalization of various graphene-based systems for catalytic
electroreduction of oxygen are elucidated, as well as important strategies to
enhance the systems' overall activity and stability are discussed
Evaluation of Reduced-Graphene-Oxide Aligned with WO3-Nanorods as Support for Pt Nanoparticles during Oxygen Electroreduction in Acid Medium
Hybrid supports composed of chemically-reduced graphene-oxide-aligned with
tungsten oxide nanowires are considered here as active carriers for dispersed
platinum with an ultimate goal of producing improved catalysts for
electroreduction of oxygen in acid medium. Here WO3 nanostructures are expected
to be attached mainly to the edges of graphene thus making the hybrid structure
not only highly porous but also capable of preventing graphene stacking and
creating numerous sites for the deposition of Pt nanoparticles. Comparison has
been made to the analogous systems utilizing neither reduced graphene oxide nor
tungsten oxide component. By over-coating the reduced-graphene-oxide support
with WO3 nanorods, the electrocatalytic activity of the system toward the
reduction of oxygen in acid medium has been enhanced even at the low Pt loading
of 30 microg cm-2. The RRDE data are consistent with decreased formation of
hydrogen peroxide in the presence of WO3. Among important issues are such
features of the oxide as porosity, large population of hydroxyl groups, high
Broensted acidity, as well as fast electron transfers coupled to unimpeded
proton displacements. The conclusions are supported with mechanistic and
kinetic studies involving double-potential-step chronocoulometry as an
alternative diagnostic tool to rotating ring-disk voltammetry.Comment: arXiv admin note: text overlap with arXiv:1805.0315
A formalism to compare electrocatalysts for the oxygen reduction reaction by cyclic voltammetry with the thin-film rotating ring-disk electrode measurements
This report describes a general method to correlate the features determining the performance of an electrocatalyst (EC), including the accessibility of O2 to the active sites and the kinetic activation barrier, with the outcome of conventional electrochemical experiments. The method has been implemented for oxygen reduction reaction ECs by cyclic voltammetry with the thin-film rotating ring-disk electrode setup. The method (i) does not rely on the simplifications associated with the Butler-Volmer kinetic description of electrochemical processes and (ii) does not make assumptions on the specific features of the EC, allowing to compare accurately the kinetic performance of oxygen reduction reaction ECs with completely different chemistry. Finally, with respect to other widespread figures of merit (e.g. the half-wave potential E1/2), the figure of merit here proposed, for example, E(jPt[5%]), allows for much more accurate comparisons of the kinetic performance of ECs
Towards 'Pt-free' Anion-Exchange Membrane Fuel Cells: Fe-Sn Carbon Nitride-Graphene 'Core-Shell' Electrocatalysts for the Oxygen Reduction Reaction
We report on the development of two new Pt-free electrocatalysts (ECs) for
the oxygen reduction reaction (ORR) based on graphene nanoplatelets (GNPs). We
designed the ECs with a core-shell morphology, where a GNP core support is
covered by a carbon nitride (CN) shell. The proposed ECs present ORR active
sites that are not associated to nanoparticles of metal/alloy/oxide, but are
instead based on Fe and Sn sub-nanometric clusters bound in coordination nests
formed by carbon and nitrogen ligands of the CN shell. The performance and
reaction mechanism of the ECs in the ORR are evaluated in an alkaline medium by
cyclic voltammetry with the thin-film rotating ring-disk approach and confirmed
by measurements on gas-diffusion electrodes. The proposed GNP-supported ECs
present an ORR overpotential of only ca. 70 mV higher with respect to a
conventional Pt/C reference EC including a XC-72R carbon black support. These
results make the reported ECs very promising for application in anion-exchange
membrane fuel cells. Moreover, our methodology provides an example of a general
synthesis protocol for the development of new Pt-free ECs for the ORR having
ample room for further performance improvement beyond the state of the art
Graphene-Based Nanostructures in Electrocatalytic Oxygen Reduction
Application of graphene-type materials in electrocatalysis is a topic of growing scientific and technological interest. A tremendous amount of research has been carried out in the field of oxygen electroreduction, particularly with respect to potential applications in the fuel cell research also with use of graphene-type catalytic components. This work addresses fundamental aspects and potential applications of graphene structures in the oxygen reduction electrocatalysis. Special attention will be paid to creation of catalytically active sites by using non-metallic heteroatoms as dopants, formation of hierarchical nanostructured electrocatalysts, their long-term stability, and application as supports for dispersed metals (activating interactions)