868 research outputs found
In-Network Distributed Solar Current Prediction
Long-term sensor network deployments demand careful power management. While
managing power requires understanding the amount of energy harvestable from the
local environment, current solar prediction methods rely only on recent local
history, which makes them susceptible to high variability. In this paper, we
present a model and algorithms for distributed solar current prediction, based
on multiple linear regression to predict future solar current based on local,
in-situ climatic and solar measurements. These algorithms leverage spatial
information from neighbors and adapt to the changing local conditions not
captured by global climatic information. We implement these algorithms on our
Fleck platform and run a 7-week-long experiment validating our work. In
analyzing our results from this experiment, we determined that computing our
model requires an increased energy expenditure of 4.5mJ over simpler models (on
the order of 10^{-7}% of the harvested energy) to gain a prediction improvement
of 39.7%.Comment: 28 pages, accepted at TOSN and awaiting publicatio
Persistent Monitoring of Events with Stochastic Arrivals at Multiple Stations
This paper introduces a new mobile sensor scheduling problem, involving a
single robot tasked with monitoring several events of interest that occur at
different locations. Of particular interest is the monitoring of transient
events that can not be easily forecast. Application areas range from natural
phenomena ({\em e.g.}, monitoring abnormal seismic activity around a volcano
using a ground robot) to urban activities ({\em e.g.}, monitoring early
formations of traffic congestion using an aerial robot). Motivated by those and
many other examples, this paper focuses on problems in which the precise
occurrence times of the events are unknown {\em a priori}, but statistics for
their inter-arrival times are available. The robot's task is to monitor the
events to optimize the following two objectives: {\em (i)} maximize the number
of events observed and {\em (ii)} minimize the delay between two consecutive
observations of events occurring at the same location. The paper considers the
case when a robot is tasked with optimizing the event observations in a
balanced manner, following a cyclic patrolling route. First, assuming the
cyclic ordering of stations is known, we prove the existence and uniqueness of
the optimal solution, and show that the optimal solution has desirable
convergence and robustness properties. Our constructive proof also produces an
efficient algorithm for computing the unique optimal solution with time
complexity, in which is the number of stations, with time
complexity for incrementally adding or removing stations. Except for the
algorithm, most of the analysis remains valid when the cyclic order is unknown.
We then provide a polynomial-time approximation scheme that gives a
-optimal solution for this more general, NP-hard problem
Secure -ish Nearest Neighbors Classifier
In machine learning, classifiers are used to predict a class of a given query
based on an existing (classified) database. Given a database S of n
d-dimensional points and a d-dimensional query q, the k-nearest neighbors (kNN)
classifier assigns q with the majority class of its k nearest neighbors in S.
In the secure version of kNN, S and q are owned by two different parties that
do not want to share their data. Unfortunately, all known solutions for secure
kNN either require a large communication complexity between the parties, or are
very inefficient to run.
In this work we present a classifier based on kNN, that can be implemented
efficiently with homomorphic encryption (HE). The efficiency of our classifier
comes from a relaxation we make on kNN, where we allow it to consider kappa
nearest neighbors for kappa ~ k with some probability. We therefore call our
classifier k-ish Nearest Neighbors (k-ish NN).
The success probability of our solution depends on the distribution of the
distances from q to S and increase as its statistical distance to Gaussian
decrease.
To implement our classifier we introduce the concept of double-blinded
coin-toss. In a doubly-blinded coin-toss the success probability as well as the
output of the toss are encrypted. We use this coin-toss to efficiently
approximate the average and variance of the distances from q to S. We believe
these two techniques may be of independent interest.
When implemented with HE, the k-ish NN has a circuit depth that is
independent of n, therefore making it scalable. We also implemented our
classifier in an open source library based on HELib and tested it on a breast
tumor database. The accuracy of our classifier (F_1 score) were 98\% and
classification took less than 3 hours compared to (estimated) weeks in current
HE implementations
- …